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Introduction

Celestial Mechanics, the study of motion of celestial bodies was one of the main branches of
astronomy up until the end of the 19th century. Primarily, it was meant to explain the motion of
planets and satellites under the Sun.
It started with Ptolemy, who proposed the geocentric model of the universe and epicycles. The
model assumed that Earth is at the center of the universe and all the celestial bodies revolved
around the Earth. This model couldn’t explain the ‘retrograde’ motion of the planets. So the
concept of epicycles (planets have additional motion in smaller cycles) was introduced. Of course,
all the above was trashed by later theories and observations. For example, Nicholas Copernicus
proposed the heliocentric model. His proposition was far more consistent with all the observations
and far simpler. Later in the 16th century, Tycho Brahe made very accurate observations before
the invention of the telescope, which led his apprentice, Johannes Kepler, to derive three empirical
laws about planetary motion.
We will also look into interesting kinds of stuff about gravity and the effects caused by it that will
touch General Relativity in some way.
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Two Body System

The two-body problem refers to the mathematical problem of predicting and describing the motion
of two objects that gravitationally interact. It is a fundamental problem in classical mechanics
and has applications in various fields, including celestial mechanics.
In the context of celestial mechanics, the two-body problem typically refers to the motion of two
celestial bodies, such as a planet and a star, or a satellite and a planet. The gravitational force
between the two bodies causes them to attract each other and influences their orbital motion.
Kepler’s laws of planetary motion are a set of three empirical laws formulated by the German
astronomer Johannes Kepler in the early 17th century, these laws describe the motion of the
planet around the sun which is derived from extensive observational data

2.1 Kepler’s Laws

Kepler’s First Law A planet orbits the Sun in an ellipse, with the Sun at one focus of the ellipse.

Kepler’s Second Law A line connecting a planet to the Sun sweeps out equal areas in equal
time intervals.
i.e.

dA

dt
=

l

2µ
(2.1)

where l is the angular momentum and µ is the reduced mass
We will get back to this later when we will see Two Body Problem
Kepler’s Third Law The Harmonic Law

P 2 ∝ a3 (2.2)

where P is the time period and a is the semi-major axis of the ellipse
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Two Body System

Trivia
Kepler published the first textbook of Copernican astronomy, Epitome Astronomiae Coperni-
canae (1618–21; Epitome of Copernican Astronomy). The Epitome began with the elements
of astronomy but then gathered together all the arguments for Copernicus’s theory and added
to them Kepler’s harmonics and new rules of planetary motion. This work would prove to be
the most important theoretical resource for the Copernicans in the 17th century. Galileo and
Descartes were probably influenced by it, and inspired Newton to come up with his theory of
Gravitation.

2.2 Solving 2 body problem

All of the work done till this was empirical. Newton was the first to precisely define force, mo-
mentum, and all these quantities. He backtracked the observations of Kepler and noticed that an
inverse square law for force would explain all of those observations.

Now we will show how to arrive at these results through Newton’s laws of motion and gravity.
Look at the diagram shown below. By Newton’s law, we can write:

Figure 2.1: 2 body system

m1
d2x1

dt2
= F12 (2.3)

m2
d2x2

dt2
= F21 (2.4)

As, r = x1 − x2

and also we know that F21 = −F12, we can write(by subtracting Eq.(2.4) from Eq.(2.3);

d2x1

dt2
− d2x2

dt2
=

(
1

m1

+
1

m2

)
F12 (2.5)

Simplifying this will lead to the below equation;

µ
d2r

dt2
= F12 = F (2.6)

where µ = m1m2

m1+m2
.
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Two Body System

This reduces the 2 body problem to a single body (Motion of a body under a central force.
Also, we will be first solving this for the general central force, so that we can get a more general
idea of the body’s motion and only later we will be putting f(r) = −Gm1m2

r2
). Taking the force as

central force (as in the case of other planetary and celestial orbits),i.e.,

F = f(r)r̂

Now observe the torque;

τ = r × F = r × f(r)r̂ (2.7)

The vector r and the force are in the direction of r. So,

τ = 0 (2.8)

Now recall polar coordinates. We can write the acceleration of any particle as

a = [r̈ − rθ̇2]r̂ + [2ṙθ̇ + rθ̈]θ̂ (2.9)

Multiplying the above acceleration with µ gives us the force.
Now the force is in the radial direction, the force in the direction of θ is zero, and hence, so is

the acceleration. So we have,

2ṙθ̇ + rθ̈ = 0 (2.10)

Multiplying the above eq. by r will clearly show us that LHS is the derivative of r2 dθ
dt

.
That means,

µr2
dθ

dt
= C (2.11)

where C is some constant.

Eq.(2.11) is the angular momentum. The fact that the angular momentum is constant can also be
checked by Eq.(2.8). As the torque is zero, the angular momentum must be constant over time
Now we need to know the energy to find out the trajectory/path that the body will follow.
We know that the total energy(E) can be written as,

E =
1

2
µv2 + U(r) (2.12)

writing v in terms of polar coordinates,

v2 = ṙ2 + (rθ̇)2

The total energy will finally become,

E =
1

2
µṙ2 +

l2

2µr2
+ U(r) (2.13)

Manipulate the equation and it will become a differential equation in r.

dr

dt
= ±

√
2

µ
(E − U(r)− l2

2µr2
) (2.14)

Learners’ Space 5 Krittika
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Two Body System

We can write ṙ
θ̇
= dr

dθ

And θ̇ is nothing but equals to l
µr2

Substituting this in Eq.(2.14) and integrating it on both sides, we get

θ = θ0 +

∫ r

r0

l
µr2

dr

±
√

2
µ
(E − U(r)− l2

2µr2
)

(2.15)

Now, we put the value of force for a system that is bound by gravity, the force f(r) is equal to
−Gm1m2

r2
.

To calculate potential energy(U(r)), we integrate the force, and we get U(r) = −Gm1m2

r

So in the energy expression,

E =
1

2
µṙ2 +

l2

2µr2
− Gm1m2

r
(2.16)

the first term determines the kinetic energy and the last two terms are the effective potential
(effective because it combines multiple, perhaps opposing, effects into a single potential. It is the
sum of the ’opposing’ centrifugal potential energy with the normal potential of the system).

Solve the integral in Eq.(2.15) by taking U(r) as −Gm1m2

r
and taking l

r
or just 1

r
as u, and it

will become a standard integral of form dx√
ax2+bx+c

, which is easily solvable and give the integral of
form − 1√

−a
arcsin 2ax+b√

b2−4ac

After solving the integral by putting r0 as l2

µGm1m2
and θ0 as −π

2
, we get ,

r =
r0

1− ϵ cos θ
(2.17)

where ϵ =
√

1 + 2El2

µ(Gm1m2)2
.

Eq.(2.17) represents the equation of a conic section in polar coordinates, where r0 equals semi-latus
rectum and ϵ is the eccentricity of the conic and θ is the angle from the line joining a focus and
its perigee(also known as a true anomaly).
Manipulating it and putting r cos θ as x and r as

√
x2 + y2, we get

(1− ϵ2)x2 − 2ϵr0x+ y2 = r20 (2.18)

Now there are 4 cases:

• ϵ > 1, which implies E > 0 and Eq.(2.18) becomes a sort of an equation of Hyperbola.

• ϵ = 1, which implies E = 0 and Eq.(2.18) becomes equation of a Parabola.

• 0 < ϵ < 1, which implies E < 0 and Eq.(2.18) becomes equation of an Ellipse

• ϵ = 0, which gives a special case of Circular orbit

This clearly shows the condition of a bounded orbit (of course parabola and hyperbola are not
bound just by looking at their shapes), which is that the energy should be −ve.
Hence the orbit of a planet/star bound to another star is elliptical.
Now we will try to find the total energy of the 2 body systems. We know that rmax + rmin = 2a

Learners’ Space 6 Krittika
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Two Body System

(perigee and apogee are the points for min and max resp.). and these min and max values of r
occur at θ = 0 and π.
Substituting these values of θ in the above equation gives us,

a =
r0

1− ϵ2
(2.19)

Substitute value of r0 and ϵ as l2

µGm1m2
and

√
1 + 2El2

µ(Gm1m2)2
resp. we get,

E = −Gm1m2

2a
(2.20)

Moving forward to Prove Kepler’s 2nd law
Now look at the below equation,

l

µ
= r2

dθ

dt
(2.21)

The above equation has a similarity with the equation v = r dθ
dt

. The only difference is one higher
power of r, which can be interpreted as surface velocity instead of linear velocity, and surface
velocity is C×(time derivative of area vector), same as linear velocity is time derivative of the
radius vector. So sometimes it’s also referred to as Areal velocity. So,

dA

dt
= C

l

µ
= Cr2

dθ

dt
(2.22)

Now taking a special case of Circular orbit(where r is constant), so we can write an elemental Area
as,

dA =
1

2
r2θ

Taking derivative w.r.t time , we get C = 1
2
.

From here the value of C is equal to 0.5.
Hence we proved Kepler’s 2nd law also.

Integrate the above surface velocity equation,∫
ellipse

dA =
l

2µ

∫
dt (2.23)

Integrating it over the whole time period of one revolution of the planet gives,

πab =
l

2µ
T (2.24)

As in Eq.(2.18), r0 = semi-latus rectum , so
r0 =

b2

2a
= l2

µGm1m2
.

Substitute l from this in Eq.(2.24) and square on both sides. You will get,

T 2 =
4π2

G(m1 +m2)
a3 (2.25)

This gives us a brief idea of how two body system works.
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Two Body System

Trivia
You can go to this link to visualize how a two-body system works by varying masses of the
bodies. You will find it interesting(especially the Sun-Earth-Moon system)

Learners’ Space 8 Krittika
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Three Body system

3.1 Introduction

We just learned about the "two-body problem" which has been solved. However, adding another
body makes things much more complicated. The typical three-body problem involves 18 first-order
differential equations(see further reading), which through the use of calculus and conservation
equations can be reduced to 6 and has not yet been solved. However, we can look at a more
restricted case to get a general idea.

The restricted three-body problem has two large masses orbiting at their common center of
mass. A third relatively smaller body is then introduced.

We will look at a case where all the bodies lie on the X-Y plane. There are two large bodies
with mass m1 and m2 with their center of mass at the origin, which are moving around it in a circle,
and a third small body with a mass m3 being p1 and p2 distant from the two bodies respectively.

Figure 3.1: 3-Body Visualization

Without loss of generality, let us assume m1 ≥ m2 and R = 1. We define µ = m2

m1+m2
. Therefore,

r1 = −µ and r2 = 1− µ.
Now, we determine the equations of motion of the third body. The kinetic energy is represented
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Three Body system

by

T =
1

2
m3(ẋ

2 + ẏ2)

and the potential energy by:

V = −Gm1m3

p1
− Gm2m3

p2

where
p1 =

√
(x− x1)2 + (y − y1)2, p2 =

√
(x− x2)2 + (y − y2)2

Now, we will shift to a rotational frame of reference, centered at the origin moving with the same
angular velocity as the first two bodies.

ω =

√
G(m1 +m2)

(r1 + r2)3
=

√
G(m1 +m2) (3.1)

The co-ordinates change as:
x′(t) = x cosωt− y sinωt

y′(t) = y cosωt+ x sinωt

. New kinetic energy will be:

T =
1

2
m3(ẋ

2 + ẏ2 + 2xωẏ − 2yωẋ+ ω2(x2 + y2))

The equations of motion, taking into account the Coriolis force and the centrifugal force is:

m3ẍ− 2m3ωẏ −m3xω
2 = −Gm1m3(x− x1)

p31
− Gm2m3(x− x2)

p32
(3.2)

m3ÿ + 2m3ωẋ−m3yω
2 = −Gm1m3(y − y1)

p31
− Gm2m3(y − y2)

p32
(3.3)

To these equations we put the values of G = ω2

m1+m2
and then µ = m2

m1+m2
. Cancelling m3, we get:

d2x

dt2
= 2ω

dy

dt
+ xω2 − ω2(1− µ)(x− x1)

p31
− ω2µ(x− x2)

p32
(3.4)

d2y

dt2
= −2ω

dx

dt
+ yω2 − ω2(1− µ)(y − y1)

p31
− ω2µ(y − y2)

p32
(3.5)

Next, we rewrite the time variable t = τ
ω

to scale out all the ω terms. After cancelling ω, we finally
get:

ẍ = 2ẏ + x− (1− µ)(x− x1)

p31
− µ(x− x2)

p32
(3.6)

ÿ = −2ẋ+ y − (1− µ)(y − y1)

p31
− µ(y − y2)

p32
(3.7)

Since we are using a rotational co=ordinate system, without loss of generality, we can say that
(x1, y1) = (−µ, 0) and (x2, y2) = (1 − µ, 0). Putting these into the above equation, the final
equations we get are:

ẍ = 2ẏ + x− (1− µ)(x+ µ)

p31
− µ(x− 1 + µ)

p32
(3.8)

Learners’ Space 10 Krittika



Three Body system

ÿ = −2ẋ+ y − (1− µ)y

p31
− µy

p32
(3.9)

with
p1 =

√
(x+ µ)2 + y2, p2 =

√
(x− 1 + µ)2 + y2

3.2 Lagrange Points

Euler and Lagrange proved that there are 5 equilibrium points(i.e., they appear to be at rest
concerning the reference frame associated wrt the first two bodies) for the third body. These
points are called Lagrange points. Since these points are at rest in the rotational frame, the
acceleration and velocity are put to zero to get:

x =
(1− µ)(x+ µ)

p31
+

µ(x− 1 + µ)

p32
(3.10)

y =
(1− µ)y

p31
+

µy

p32
(3.11)

Euler discovered three points, which were collinear with the two bodies. Thus, by putting y = 0,

x− (1− µ)(x+ µ)

|x+ µ|3
− µ(x− 1 + µ)

|x− 1 + µ|3
(3.12)

This equation has 3 roots and these points are labeled as L1, L2, and L3. In most cases, µ is
small, and L1 and L2 lie on either side of the smaller body, and L3 lies on the far side of the larger
body. Later, Lagrange discovered the location of the other two points to be at equilateral triangles
from the two large bodies. Here, p1 = p2 = 1, x = µ − 1/2 and y = ±

√
3
2

. They are called L4

and L5. It is to be noted that the first 3 Lagrange points are unstable equilibriums, and L4 and
L5 are stable if µ < 1

2
(1 −

√
23
27
) = 0.0385208965. Almost all values of µ in our Solar System is

less than this value. Trojan is the best example for stability at points L4 and L5. In the Solar
System, most known Trojans share the orbit of Jupiter. In other planetary orbits only nine Mars
trojans, 28 Neptune trojans, two Uranus trojans, and two Earth trojans, have been found to date.
A temporary Venus trojan is also known.

(a) Example for stability at L4 and L5
(b) Lagrange points

Figure 3.2
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Three Body system

Trivia
Some bodies present at different Lagrange points of different systems are:

• The James Webb Space Telescope, a powerful space observatory, is located at L2 of the
Sun-Earth System. This location protects the telescope from the light and heat from the
Sun.

• An artificial satellite called the Deep Space Climate Observatory (DSCOVR) is located
at L1 to study solar wind coming toward Earth from the Sun and to monitor Earth’s
climate, by taking images and sending them back.

• The Sun–Earth L4 and L5 points contain interplanetary dust and at least two asteroids.

• The Earth–Moon L4 and L5 points contain concentrations of interplanetary dust, known
as Kordylewski clouds.

• The Sun–Neptune L4 and L5 points contain several dozen known objects, the Neptune
trojans.

• In binary stars, the Roche lobe has its apex located at L1; if one of the stars expands
past its Roche lobe, then it will lose matter to its companion star, known as Roche lobe
overflow.

• One version of the giant impact hypothesis postulates that an object named Theia formed
at the Sun–Earth L4 or L5 point and crashed into Earth after its orbit destabilized, forming
the Moon.

3.3 Some nice examples of 3 body system

Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same
family of solutions: the Broucke–Henon–Hadjidemetriou family. In this family, the three objects
all have the same mass and can exhibit both retrograde and direct forms. In some of Broucke’s
solutions, two of the bodies follow the same path
In 1993, a zero angular momentum solution with three equal masses moving around a figure-eight
shape was discovered numerically by Cris Moore
Finally, some 20 periodic solutions of the 3 body problem were discovered, as shown below:
Refer to the links given below each image to understand it with the help of a GIF.
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Three Body system

Figure 3.3: https://en.wikipedia.org/wiki/File:Three_body_problem_figure-8_orbit_
animation.gif

Figure 3.4: https://en.wikipedia.org/wiki/File:5_4_800_36_downscaled.gif

Learners’ Space 13 Krittika
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Three Body system

3.4 Approaching the n-body problem

As the heading suggests, we will be attempting to find certain properties of a system of n-bodies
that are gravitationally bound. First, we write the equations of motion for all the bodies. Denoting
all their positions by r⃗i and velocities with v⃗i for i = 0, . . . , n − 1 and writing all the differential
equations:

dr⃗i
dt

= v⃗i,
dv⃗i
dt

=
∑
i ̸=j

Gmimj(r⃗j − r⃗i)

|rj − ri|3
, i = 0, 1, . . . , n− 1

Notice that there are a total of 6n first-order differential equations for bodies in three dimensions.
If we restrict them to two dimensions, combine the velocity vector equations, and use the help of
conservation quantities: energy, linear momentum, and angular momentum, we are still left with
too many equations. We can use numerical integration to compute their trajectories given their
initial position and velocities.

Henceforth, it is possible to derive statistical results for such a system. One such result is the
Virial theorem which states that in a gravitationally bounded system, the time average of the
total kinetic energy is negative half of the time average of the total potential energy of that system
over a long time. i.e.,

⟨T ⟩ = −1

2
⟨U⟩

This only assumes that the r⃗is and v⃗is remain bounded over time.

Trivia
The viral theorem is an important statistical result that can help us in calculating the average
kinetic energy of the system even in very complicated systems. Apart from classical mechanics,
it has been used in thermodynamics, quantum mechanic,s and even relativistic systems! (See:
wiki)

Learners’ Space 14 Krittika
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Satellites

4.1 Introduction

Since October 4th, 1957, many hundreds of artificial satellites have been placed in orbit around
the Earth. We have seen that Newton himself showed that if the projectile was given a sufficient
velocity outside the Earth’s atmosphere, it would become a satellite of the Earth. But it was
only by the development of the rocket during and after the Second World War that a means
was provided of imparting to a payload of instruments the velocity necessary to keep it in orbit.
Artificial satellites are subject to Newton’s laws of motion and the law of gravitation. They usually
obey Kepler’s laws very closely. If the Earth were a point-mass and no other force acted upon the
satellite, a satellite would obey Kepler’s laws exactly and remain in orbit forever. Many forces,
however, may act on the satellite. Among these forces are:

(1) the Earth’s gravitational field,
(2) the gravitational fields of the Sun, Moon, and the planets,
(3) the Earth’s atmosphere and
(4) the Sun’s radiation pressure.

In almost every case, the orbital changes produced by the Sun, Moon, and the planets are so small
that they can be neglected. Only in the case of those artificial satellite orbits that take the satellite
many thousands of kilometers away from the Earth does the disturbing effect of the Moon have to
be considered. Even then, it is still small. As a result of the momentum associated with photons
within any flow of radiation, the flux produces a pressure or force on any surface which intercepts
the radiation. For a satellite whose size is large (for example a balloon satellite) and whose mass
is small, the Sun’s radiation pressure can produce large changes in the satellite’s orbit over many
months. For all other satellites, the orbital changes due to solar radiation pressure are negligible
unless orbital positions are required to very high precision. The two main causes of change in a
satellite orbit are, therefore, the departure of the Earth’s shape from that of a perfect sphere and
the drag due to the Earth’s atmosphere on those satellites being low enough to experience it

4.2 Transfer of Satellites

In the below figure, we have two circular, coplanar orbits of radii a1 and a2 astronomical units
(AU).
Remember from earlier, that the energy per unit mass of each orbit can be written as:

15



Satellites

Figure 4.1: Description of two co-planar orbits

C1 =
1

2
V 2 − GM

a1

The reason for using C1 instead of standard E1 is because we are writing an expression of Energy
per unit mass of the revolving body, and not just Energy, So to avoid confusion I’ve taken it as
C1.
We get,

C1 = −GM

2a1

Similarly,

C2 = −GM

2a2

Now a2 > a1, so that C1 < C2, in other words, a change of orbit would be a change of energy. This
change of energy is brought about by the rocket engine. By imparting a velocity increment ∆V to
the rocket, it changes its kinetic energy and, hence, its total energy. Hohmann studied how this
could be most effectively done.
If the increment ∆V is applied along the instantaneous velocity vector V, then the maximum
increase in kinetic energy is achieved for a given burn, i.e. the full effect of ∆V is added to V.
If it is desired to decrease the kinetic energy, the velocity increment ∆V would be applied in the
opposite direction to V.

Hohmann showed that, in practice, the most economical transfer orbit between circular, coplanar
orbit was an elliptical orbit cotangential to inner and outer orbits at perihelion and aphelion re-
spectively. It is shown in the above figure as ellipse APB. Only one-half of the transfer orbit is
used. At A, the rocket engine is fired to produce a velocity increment ∆VA, applied tangentially
to place the vehicle in the transfer orbit. The vehicle coasts round the half-ellipse APB, reaching
aphelion at B. If no further change in energy took place, the vehicle would coast onwards along
the mirror half of textitAPB to return eventually to A. A second impulse is, therefore, required
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Satellites

Figure 4.2: A Hohmann transfer orbit APB between two circular, co-planar orbits

to produce a second velocity increment ∆VB. This is again obtained by firing the rocket engine
tangentially and the rocket enters the outer circular orbit of radius a2 AU.
Such transfer orbits are known as Hohmann least-energy two-impulse cotangential orbits.
By solving for this elliptical orbit, we can easily calculate the increment in velocity at points A
and B.
Which comes out to be:

∆VA =

√
GM

a1

[√ 2a2
a1 + a2

− 1
]

∆VB =

√
GM

a2

[
1−

√
2a1

a1 + a2

]

Trivia
There are other viable methods for orbit transfers as well:

• Bi-elliptic transfer

• Low thrust relative orbit transfer

4.3 Gravitational Slingshot

A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital
mechanics, is a type of spaceflight flyby which makes use of the relative movement (e.g. orbit
around the Sun) and gravity of a planet or other astronomical object to alter the path and speed
of a spacecraft, typically to save propellant and reduce expense.

Gravity assistance can be used to accelerate a spacecraft, that is, to increase or decrease its speed
or redirect its path. The "assist" is provided by the motion of the gravitating body as it pulls on
the spacecraft. Any gain or loss of kinetic energy and linear momentum by a passing spacecraft
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is correspondingly lost or gained by the gravitational body, by Newton’s Third Law. The gravity
assist maneuver was first used in 1959 when the Soviet probe Luna 3 photographed the far side
of Earth’s Moon and it was used by interplanetary probes from Mariner 10 onward, including the
two Voyager probes’ notable flybys of Jupiter and Saturn.
You can look at these links for the animations given below for visualization:

Figure 4.3: https://en.wikipedia.org/wiki/File:Animation_of_Voyager_1_trajectory.
gif

Figure 4.4: https://en.wikipedia.org/wiki/File:Animation_of_Voyager_2_trajectory.
gif
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Tides

The regular rise and fall of the ocean’s waters are known as tides. Along coasts, the water slowly
rises over the shore and then slowly falls back again. When the water has risen to its highest level,
covering much of the shore, it is at high tide. When the water falls to its lowest level, it is at low
tide.

Tides are caused by a combined effect of the gravitation of the moon and the sun, and also
by the rotation of the earth. Although the sun and moon both exert gravitational force on the
Earth, the moon’s pull is stronger because the moon is much closer to the Earth than the sun
is. The moon’s ability to raise tides on the Earth is an example of a tidal force. The part of the
earth facing the moon and the part opposite to it experience a bulge in the ocean called a high
tide. Between these parts, the water level falls. This is called a low tide. High and low tides occur
alternatively twice every day (on a 12h 25m interval to be more precise) because that is the time
moon takes to face opposite sides of the earth every day. The extent of change in water level also
changes on a fortnightly basis. During a full or new moon, both sun’s and moon’s tidal forces
act together to cause higher high tides and lower low tides. These are called spring tides. On the
other hand, during the first and third quarters, their forces counteract each other to produce low
variations in tides. These are called neap tides.

Now we will be looking at how the tidal forces of the sun and moon affect Earth.

(a) Force fields
(b) Resultant force fields

Figure 5.1

Look at the above image showing the force fields due to the sun and moon and the resultant of
that force vectors.
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• Black vector - gravitational acceleration of Moon.

• Green vectors - gravitational acceleration at the center.

• Red Vectors - resultant vectors.

This clearly shows that

• High tides at two opposite sides of the earth face the moon.

• Low tides at the perpendicular sides.

Figure 5.2: Force vectors at point P on earth

The above figure is just showing force vectors(resolved along x and y-components) at a point P on
Earth.
We have these 4 equations for forces at point C and point P:

FPx =
GMm

s2
cosϕ (5.1)

FPy = −GMm

s2
sinϕ (5.2)

FCx =
GMm

r2
(5.3)

FCy = 0 (5.4)

What we are interested in is the difference between forces at P and C. This is because this ∆F is
roughly equal to the net force experienced at those points.

∆F = FP − FC (5.5)

So,

∆Fx = GMm
[cosϕ

s2
− 1

r2

]
(5.6)

∆Fy = −GMm
[sinϕ

s2

]
(5.7)

Note that ϕ ≪ θ as r ≫ R.
From the cosine rule,

s2 = r2 +R2 − 2Rr cos θ
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As r ≫ R,

s2 ≈ r2
[
1− 2

R

r
cos θ

]
Take inverse on both sides and doing binomial expansion, we get,

1

s2
≈ 1

r2
+

2R cos θ

r3

And also ϕ is very small: just look at the distance between the earth and the moon and the radius
of the earth, and you will get to know why I’m saying that ϕ is small and we can use small angle
approximation in this by putting cosϕ ≈ 1
Now Eq.(5.6) becomes,

∆Fx = GMm
[ 1

s2
− 1

r2

]
and finally, it can be written as,

∆Fx = GMm
[2R cos θ

r3

]
Look at figure 5.2, we can write R sin θ = s sinϕ
Manipulate this by writing,

sinϕ

s2
=

R sin θ

s3

As small angle approximation suggests, we can write s ≈ r
so Eq.(5.7) can be written as,

∆Fy = −GMm
[R sin θ

r3

]
The above equations tell us that the X-component of force elongates the planet at equators, and
the Y-component of force compresses the planet at the poles. See the below figure,
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Figure 5.3: Force vector directions

Now clearly from the above equations, we see that tidal forces (difference in force due to which
tides arise) is ∝ r−3, which explains why the effect due to the moon is highest when talking about
tides.
Not only tides but also according to a theory, these tidal forces explain the formation of the rings
present in Saturn and tell us the minimum distance an object should be from the planet to not
disintegrate/the binding forces of the object shouldn’t be less than the tidal forces due to the
planet. This is termed as Roche Limit.

Trivia
Do you know what happens when two galaxies come close together? If one galaxy is significantly
bigger than the other, it will eat it up by first disrupting the smaller galaxy. The process of
how this happens is similar to tidal disruption. This is an example of a galaxy merger. The
Mice Galaxies (NGC 4676 A&B) are in the process of merging.
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Black Holes

Ah finally! Black holes... Who doesn’t like black holes? Some of you may have taken this course
to know more about black holes. Well rightly so! Black holes are mysterious, we don’t know what
is inside, etc, etc, perfect to spark human interest! It turns out that with the amount of knowledge
that you have gained till now, you can guess pretty cool stuff about black holes (BH for short).

Figure 6.1: One of the first images that comes to our mind when we think of BHs, at least, for
those who saw the movie Interstellar (2014). If you haven’t seen it yet, stop reading this and go
watch it! (This also means that you missed Krittika’s screening of the movie :()

6.1 Schwarzschild radius

Strictly speaking, the concept of BHs is a general relativistic thing. But it turns out that you
could get some stuff right about them if you use classical Newtonian mechanics. That is what we
are going to do!
As you know a BH is called so because even light cannot escape it. So a naive way of estimating
the so-called ‘point of no return’ or ‘black hole’s radius’ or Schwarzschild radius rBH would be

23



Black Holes

to equate the escape velocity to the speed of light.√
2GMBH

rBH
= c

rBH =
2GMBH

c2
(6.1)

where MBH is the mass of BH.
Even though the above approach is wrong, rigorous general relativistic calculations also lead to
the same radius!
The below image is the First image of the Black Hole at the center of Galaxy M87 that has been
captured.

Figure 6.2: Black Hole at the center of Galaxy M87.

The image above looks very unimpressive, doesn’t it? Well, it’s hard to appreciate the above image
when there are many excellent graphics/animations of BHs. The image is kinda blurred (stupid
photography right?). But capturing the above image wasn’t easy. It took a few years, a global
team of hundreds of scientists, and petabytes of data to obtain the image. Why is it still blurred
then? Well the above BH is a very very tiny object (just 5 billion times more massive than our
Sun) in a galaxy far far away (53.49 million light-years). Even though the BH is very massive, its
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size, the Schwarzschild radius rBH is of the order of 10−3 light years. So no surprise that it was
very very hard to resolve the object (imagine trying to take a picture of an airplane that is 10 km
above you, will you get a clear picture?).
So why did we even bother to take a picture then? One reason: it’s pretty cool. Another more
scientific reason: it’s a direct test of the general theory of relativity (it passed). We can verify the
formula of the Schwarzschild radius using the picture! The dark region of the photograph is the
event horizon, so the radius of the dark region should be the Schwarzschild radius, right....? No,
it turns out to be wrong! Why? Unfortunately, it cannot be dealt with using Newtonian gravity,
we need general relativity. Fortunately (or unfortunately for some of you, since you have to read
more), we can get some great insights with the help of our current knowledge of celestial mechanics
and one equation borrowed from general relativity.

6.2 Shadow of a Black Hole!

So let us phrase the problem properly: given an uncharged, non-rotating BH of mass M , our task
is to find the ‘shadow of the BH’, that is, the apparent radius of the dark region as seen by an
observer far away from the BH. Strictly speaking, the math that follows this is invalid for most
BHs including the imaged BHs from M87 and one from our galaxy since both of them are spinning
BHs. A region of space is a shadow if no photons are reaching our eye from that region. By
analyzing the trajectories of photons around a BH we can determine the shadow. Mind you, light
doesn’t travel in straight lines around a BH, gravity is way too high...
Consider a photon currently at a distance of r from the center of BH. We have the energy
conservation, (the equation comes from general relativistic treatment)

1

2
ṙ2 +

l2

2r2
− l2rBH

2r3
= E (6.2)

Does it not look very similar to the equation (2.13) ... The only difference from normal Newtonian
gravity is the third term, U(r). Here we have 1

r3
instead of the usual 1

r
dependence.

Trivia
The above equation (6.2) is analogous to the energy conservation equation. But notice that E
here does not have the dimensions of energy. This is because E here is energy per unit mass of
the photon. Photon is a massless particle but for some practical purposes we can consider it to
be a particle of mass mph, where

mph =
Eph

c2

Eph = hf is the energy of photon (the above comes from E = mc2).

Look at equation (6.2) again. It is a function of r and ṙ. Take v = ṙ = dr
dt

. Now doesn’t
1
2
ṙ2 = 1

2
v2 look like kinetic energy of the system? The rest, l2

2r2
− l2rBH

2r3
is only a function of r. So

we can define a new effective potential Veff(r) as

Veff(r) =
l2

2r2
− l2rBH

2r3
(6.3)
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r/rBH

Veff

1 3
2

Figure 6.3: Effective potential of photon-BH system as a function of r.

Figure (6.5) shows the plot of Veff. We can see that at r = 3
2
rBH we have a point of equilibrium

(recall from your JEE days! A maxima/minima is an equilibrium position). However, since 3
2
rBH

is a point of maxima, the equilibrium is unstable. What does that mean? First of all what does
equilibrium at r = 3

2
rBH mean? If a photon is at r = 3

2
rBH and has radial velocity v = ṙ = 0,

the photon has a circular orbit! Why a circular orbit, why not stationary? Well duh! It’s a
photon it must move with velocity c. All its velocity is tangential. Hence the orbit of a photon is
circular. But unlike the orbits of planets, this circular orbit is highly unstable. That is, a photon
tends to move out or into rather than stay in the orbit. If a photon gains a slight inwards radial
velocity, there is no stopping it! It will fall into the BH never to return! If the photon has a slight
outward radial velocity, the photon will move away from the BH. The special sphere (radius rph
where photons form circular orbits is called photon sphere.

rph =
3

2
rBH (6.4)

for a non-rotating BH. For a spinning BH there are more than one photon spheres.

d

rph

BH Observer

r

rsh

αθ

Figure 6.4: The figure shows the trajectory of a photon with 0 initial radial velocity. rsh denotes
the size of the dark region perceived by an observer at a distance d ≫ rBH.

Note that for the photon-BH system, angular momentum is conserved.

r2θ̇ = l (6.5)
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θ is defined in the figure above. From equations (6.2) and (6.5), we have(
dr

dθ

)2

=
2E

l2
r4 − r2

(
1− rBH

r

)
Since the initial radial velocity v = ṙ = 0, we have

E = 0 +
l2

2r2ph
− l2rBH

2r3ph
=

2l2

27r2BH

From figure (6.4) we have
rsh = d tanα

tanα =
dy

dx

x = r cos θ and y = r sin θ

We have,
dy

dx
=

dr
rdθ

tan θ + 1
dr
rdθ

− tan θ

Here at observation point θ = 0, so
dy

dx
=

rdθ

dr

Also, we had just proved that

dr

dθ
=

√
2E

l2
d4 − d2

(
1− rBH

d

)
Note that d ≫ rBH. So we have

dr

dθ
≈ 2d2

3
√
3rBH

So
rsh = d

(
rdθ

dr

)
r=d

Therefore the radius rsh of the dark region or ‘shadow region’ in a picture of uncharged non-rotating
BH is,

rsh =
3
√
3

2
rBH (6.6)

One last thing that we need to understand properly is: why is the limiting ray shown in figure
(6.4) tangential to the photon sphere? That is because it is nearly impossible for regular photons
to escape from inside the photon sphere.
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Trivia
The orbit of a photon around a BH is a very unique one. It is inherently unstable, unlike the
orbits of massive particles (without GR). This is evident from the effective potential of massive
particles.

Veff(r) =
l2

2µr2
− Gm1m2

r

r

Veff

Figure 6.5: Effective potential of a regular two-body system.
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Gravitational Lensing

7.1 Introduction

A gravitational lens is a distribution of matter (such as a cluster of galaxies) or a point particle
between a distant light source and an observer that is capable of bending the light from the source
as the light travels toward the observer. This effect is known as gravitational lensing, and the
amount of bending is one of the predictions of Albert Einstein’s general theory of relativity. In
general relativity, gravity is the result of objects moving through curved spacetime, and everything
that passes through, even massless particles such as photons, Thus, treating light as corpuscles
traveling at the speed of light, we can calculate deviation in the motion of light. Newtonian physics
also predicts the bending of light, but only half of that is predicted by general relativity.

Unlike an optical lens, a point-like gravitational lens produces a maximum deflection of light
that passes closest to its center, and a minimum deflection of light that travels furthest from its
center. Consequently, a gravitational lens has no single focal point, but a focal line. If the (light)
source, the massive lensing object, and the observer lie in a straight line, the original light source
will appear as a ring around the massive lensing object (provided the lens has circular symmetry).
If there is any misalignment, the observer will see an arc segment instead.

This effect was confirmed in 1979 by observation of the Twin QSO SBS 0957+561.

7.2 Einstein Ring

Consider a spherically symmetric object with a mass M. This object will act like a lens, with an
impact parameter r0 measured from the center of the object. The deflection equation in this case
is given by:

ϕ =
4GM

r0c2

The distance to the source is ds
cosβ

≈ ds, where β << 1, and dL is the distance to the lensing mass.
It is then a matter of simple trigonometry to show that the angle θ between the lensing mass and
the image of the source must satisfy the equation
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Figure 7.1: Geometry of Gravitational Lensing

θ2 − βθ − 4GM

c2

(
ds − dL
dsdL

)
= 0

The above quadratic equation indicates that for the geometry shown in the figure, there will be
two solutions for θ, and so two images will be formed by the gravitational lens.
If a bright source lies exactly along the line of sight to the lensing mass, then it will be imaged as
an Einstein ring encircling the lens. In this case β = 0.

θE =

√
4GM

c2

(
ds − dL
dsdL

)

7.3 Applications of Lensing

The main application lies in the finding of exoplanets. The gravity from stars is far weaker than
that of a galaxy cluster, but in some cases, astronomers can still measure lensing from them. “Mi-
crolensing” is the effect when one star passes in front of another from our point of view. Stars within
the Milky Way don’t appear to move quickly from our perspective, but occasionally one crosses
another. When that happens, microlensing makes the background star’s light appear brighter for
a period of weeks to months.

If the closer star is host to exoplanets, those planets alert the microlensing slightly, which as-
tronomers can detect under the right circumstances. Microlensing has let us find smaller planets
orbiting farther from their host star than other methods can do easily. Large-scale surveys such
as the Korea Microlensing Telescope Network (KMTNet) detect thousands of microlensing events
every year, but the number of planets identified this way is still small. Next-generation observa-
tories like the Nancy Grace Roman Space Telescope (NGRST) will potentially detect even more
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Figure 7.2: The ring in this picture is created by gravitational lensing due to the red galaxy at its
center. It distorts the image of a distant blue galaxy. The magnification from the lens lets us see
the blue galaxy, which would otherwise be too faint.

in the coming years. Look at these links below each image to see the animation and get
a feel of what’s happening
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Figure 7.3: Gravitational microlensing of the light of a distant background star by a passing rogue
exoplanet
https://en.wikipedia.org/wiki/File:Gravitational_lens.gif

Figure 7.4: Gravitational microlensing of the light of a distant background star by a passing
exoplanet with a host star
https://en.wikipedia.org/wiki/File:Microlensingexoplanet.gif
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Further Reading

1. An introduction to mechanics by Kleppner (“Central Force motion” for two-body system and
“Non-inertial system and Fictious force” for Tides).
2. Celestial mechanics in Fundamental Astronomy by “Hannu Karttunen”.
3. “Introduction to Modern Astrophysics by Carroll and Ostlie” for Celestial mechanics and also
can be referred for General Relativity at the starting level.
4. You can refer to Sir. Leonard Susskind General Relativity playlist, if someone wants to go
deeper in GR.
5. The Circular Restricted Three-Body Problem by Richard Frnka.
6. Poincare and the Three Body Problem by Barrow-Green, June.
7. Astronomy Principles and Practice by A.E Roy and D.Clarke for Hohmann Transfer orbit
Most books mentioned above can be referred to for a basic introduction to other
topics of astronomy/astrophysics as well.
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