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1. Special Relativity
The Newtonian view of physics, although immensely successful, fails whenobjects approach the speed of light. In such regimes, we enter the domain of
Special Relativity, developed by Albert Einstein in 1905. This chapter outlinesthe conceptual and mathematical structure of the theory, focusing on inertialframes, Lorentz transformations, and their counterintuitive but experimentallyverified consequences.

1.1 Foundations of Special Relativity
Postulate 1: The laws of physics are the same in all inertial frames.

Postulate 2: The speed of light in vacuum is constant in all inertial frames,independent of the motion of the source or the observer.These assumptions challenge the classical Galilean notion of absolute spaceand time. One is forced to abandon the idea that time is universal—differentobservers measure different time intervals for the same event.

1.2 Lorentz Transformations
Consider two frames: S and S ′, where S ′ moves with velocity v relative to S inthe x-direction. The Galilean transformations:

x ′ = x − v t , t ′ = t

fail to preserve the constancy of the speed of light. Instead, the correcttransformations are:
x ′ = γ (x − v t ) (1.1)
t ′ = γ

(
t − vx

c2

) (1.2)
where γ = 1√

1−v 2/c2
is the Lorentz factor. These are the Lorentz transformations

and they imply effects such as time dilation and length contraction.
1



1.3. Spacetime and Simultaneity 2
1.3 Spacetime and Simultaneity

Figure 1.1: Worldlines and light conesin Minkowski space

Special Relativity unites space and timeinto a single entity called spacetime.Events are represented as points in thisspace, and particles trace out worldlines.Two events considered simultaneous inone frame may not be simultaneous inanother—a phenomenon known as the
relativity of simultaneity. This has pro-found implications, e.g., the famous light-clock thought experiments and the train-lightning paradox.

1.4 Time Dilation and Length Contraction
Time Dilation: A clock moving with speed v relative to an observer ticks slower:

∆t = γ∆t0

Length Contraction: An object moving at speed v appears shortened in thedirection of motion:
L =

L0

γ

These effects have been experimentally confirmed using fast-moving muonsand atomic clocks on airplanes.

1.5 The Twin Paradox
A classic example illustrating time dilation is the Twin Paradox. One twin travels atrelativistic speeds to a distant star and returns. Upon return, they are younger thanthe twin who stayed on Earth. This is not a paradox when we account for the factthat the traveling twin undergoes acceleration, making their frame non-inertialduring turnaround.
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1.6 Relativistic Kinematics

The velocity addition rule in Special Relativity is given by:
u =

u′ + v
1 + u ′v

c2This ensures that no matter how velocities are combined, the resultant speednever exceeds c. The motion of particles must lie within the light cone of space-time diagrams to preserve causality.

1.7 4-Vectors and Invariant Interval
A key development is the use of 4-vectors. The spacetime interval between twoevents is invariant under Lorentz transformations:

∆s2 = c2∆t 2 − ∆x 2 − ∆y 2 − ∆z 2

This quantity is analogous to distance in Euclidean space but has a mixedsignature. It distinguishes between spacelike, timelike, and lightlike separations.

1.8 Geometry Of SpaceTime
The views of space and time which I wish to lay before you have sprung fromthe soil of experimental physics, and therein lies their strength. They are radical.Henceforth space by itself, and time by itself, are doomed to fade away into mereshadows, and only a kind of union of the two will preserve an independent reality

1.9 Proper Time
The concept of Proper Time τ is central to understanding particle motion in SpecialRelativity. It is defined as the time measured by a clock moving with the particleitself, making it an invariant quantity across all inertial frames.Along a worldline, the infinitesimal interval is given by the invariant spacetimeseparation:

dτ =

√
d t 2 − dx 2

c2
= d t

√
1 − u2

c2
=

d t

γ

Here, u = dx
d t is the particle’s velocity and γ = 1√

1−u2/c2
is the Lorentz factor.

The total proper time experienced by a particle between events is:
τ =

∫
d t

γ



1.10. 4-Velocity 4
1.10 4-Velocity

We now parameterize a particle’s spacetime trajectory with proper time τ , writingits position as a 4-vector:
X µ (τ) =

(
ct (τ)
x (τ)

)
Differentiating with respect to τ , we define the 4-velocity as:

U µ =
dX µ

dτ
= γ

(
c

®u

)
The 4-velocity satisfies the Lorentz-invariant condition:

U µUµ = c2

Unlike the 3-velocity, the 4-velocity transforms linearly under Lorentz transfor-mations and is always a timelike vector for massive particles.

1.11 4-Momentum
The natural extension of momentum to relativity is the 4-momentum:

P µ = mU µ =

(
γmc

γm ®u

)
Its components are: - Time-like component: P 0 = γmc = E

c - Space-likecomponents: ®p = γm ®uThe energy-momentum relation follows:
P µPµ = E 2/c2 − p2 = m2c2 ⇒ E 2 = p2c2 +m2c4

which generalizes the iconic E = mc2 for particles with kinetic energy.

1.12 Massless Particles
For particles withm = 0, such as photons, the concept of proper time breaks down,since their trajectories are null—they lie on the light cone. Their 4-momentumsatisfies:

P µPµ = 0

This implies:
E = pc and P µ =

E

c

(
1
p̂

)
where p̂ is the unit vector in the direction of motion.



1.13. Relativistic Particle Physics 5
These particles must always travel at speed c. The constancy of this speedacross all inertial frames is a fundamental postulate of Special Relativity.
An intriguing aspect of massless particles is their transformation under Lorentzboosts. Due to the Doppler effect, their frequency and energy change for differentobservers, but their speed remains invariant.

1.13 Relativistic Particle Physics
In high-energy regimes, the framework of Special Relativity becomes essential inunderstanding the behavior and interactions of particles. Processes such as colli-sions and decays are most naturally analyzed using 4-momentum conservation,which encompasses both energy and momentum conservation.

1.14 Relativistic Particle Decay
Consider a particle of rest mass m1 decaying into two particles of masses m2and m3. In the rest frame of the original particle, energy conservation gives:

E1 = m1c
2 =

√
p2c2 +m2

2c
4 +

√
p2c2 +m2

3c
4

Solving this provides the momenta and energies of the decay products. Forexample, in the decay of the Higgs boson h → γγ, the photons are emittedback-to-back in the rest frame, each carrying half the total energy:
Eγ =

1

2
mhc

2

1.15 Relativistic Collisions
For elastic collisions, where two identical particles collide and scatter, one oftenanalyzes the problem in the center-of-mass frame. Suppose both particles havemass m and initial 4-momenta:

P
µ
1 = (mcγ,mvγ, 0, 0), P

µ
2 = (mcγ,−mvγ, 0, 0)

After scattering at an angle θ, the momenta change but total 4-momentumremains conserved:
P1 + P2 = P3 + P4

In the lab frame, if one particle is initially at rest, the velocity transformationbecomes essential:
u =

2v

1 + v 2/c2
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1.16 Particle Creation and Threshold Energy

In some collisions, new particles are produced, converting kinetic energy intorest mass. Consider the production of a third particle of mass M in addition totwo particles of mass m. In the center-of-mass frame, the total energy beforeand after must satisfy:
4m2γ2v c

2 = (2mc2 +Mc2)2/c2

Solving for γv , we obtain the minimum Lorentz factor and hence the thresholdenergy per particle required:
γv ≥ 1 + M

2mIn the lab frame (one particle at rest), the threshold kinetic energy is significantlyhigher:
T ≈ M 2c2

2mThis quadratic scaling with M is why modern particle colliders use colliding
beams rather than a stationary target.

1.17 Compton Scattering
A photon scattering off an electron results in a change in the photon’s wave-length—a phenomenon called Compton Scattering. Conservation of 4-momentumgives:

E ′2 = (E + Ee)2 − | ®pγ + ®pe |2c2

In the electron’s rest frame, the Compton formula can be derived:
λ′ − λ =

h

mec
(1 − cos θ)

This effect provides direct experimental confirmation of relativistic energy andmomentum conservation in quantum processes.
1.18 Mass-Energy Conversion and Relativity

Special relativity generalizes the classical notion of mass conservation. Therelation:
E 2 = p2c2 +m2c4

demonstrates that mass and kinetic energy are interchangeable forms of energy.For massive particles at rest:
E = mc2

In particle physics, mass can be created from energy (as in pair production),or vice versa (as in annihilation), which forms the foundational principle behindnuclear and high-energy physics.
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1.19 Conclusion

Special Relativity fundamentally reshapes our understanding of space, time,and motion. It removes the notion of absolute simultaneity and establishes theconstancy of the speed of light as a cornerstone of physical law. The conceptsdeveloped here lay the groundwork for General Relativity, where spacetime is nolonger flat but curved by mass and energy.
In the next chapter, we explore how these ideas extend to gravity, culminatingin the elegant and powerful framework of Einstein’s General Relativity.



2. Geodesics In SpaceTime
In Newtonian gravity, particles move under the influence of a force determinedby the gravitational field. In Einstein’s general relativity, gravity is no longer aforce: it is encoded in the geometry of spacetime itself. Particles follow thenatural straight-line paths—geodesics—in this curved spacetime. This chapterconstructs the equations governing such motion, beginning with the principle ofleast action in curved space and extending it to relativistic particles.

2.1 The Principle of Least Action
The motion of particles can be derived from a single principle: they follow thepath that extremizes an action functional. Consider a particle moving along a path
x i (t ) from t1 to t2. The action is defined as:

S [x i (t )] =
∫ t2

t1

d t L (x i , ¤x i )

Stationarity of the action δS = 0 under arbitrary variations yields the Euler-Lagrange equations:
d

d t

(
∂L

∂ ¤x i

)
− ∂L

∂x i
= 0

2.2 Geodesics in Curved Space
In a curved space, distances are measured using a position-dependent metric
gi j (x ):

ds2 = gi j (x ) dx idx j

The kinetic Lagrangian for a particle of mass m is:
L =

m

2
gi j (x ) ¤x i ¤x j

Solving the Euler-Lagrange equations gives the geodesic equation:
¥x i + Γij k ¤x

j ¤x k = 0

8



2.3. Relativistic Particles 9
with Christoffel symbols defined as:

Γij k =
1

2
g i l (∂j gk l + ∂k gj l − ∂l gj k

)
Examples
Flat Space in Polar Coordinates: Even flat Ò3 space has non-zero Christoffelsymbols in curvilinear coordinates:

ds2 = dr 2 + r 2dθ2 + r 2 sin2 θdφ2

Motion on the Sphere S2: By fixing r = R , the metric becomes:
ds2 = R 2(dθ2 + sin2 θ dφ2)

Geodesics on S2 are great circles.

2.3 Relativistic Particles
To describe relativistic motion, time and space must be treated on equal footing.
Minkowski Spacetime
The flat spacetime interval is:

ds2 = −c2d t 2 + dx 2 + dy 2 + dz 2 = ηµνdx
µdxν

For a particle moving in spacetime, we introduce an arbitrary parameter σ alongthe worldline, and define the action:
S = −mc

∫
dσ

√
−ηµν

dxµ

dσ

dxν

dσ

This action is reparameterization invariant.

2.4 Momentum and Constraints
The canonical momentum is:

pµ =
∂L

∂ ¤xµ
= muµ = m

dxµ

dτ

which leads to the mass-shell condition:
ηµνp

µpν = −m2c2
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2.5 Reparameterization Invariance

Since σ is arbitrary, one can choose σ = τ (proper time), simplifying the La-grangian to:
L = −mc2

√
1 − ¤x 2

c2

2.6 Rediscovering the Forces of Nature
Two important modifications to the action:

• Electromagnetic interaction:
S → S − q

∫
Aµdx

µ

• Gravitational interaction:
ηµν → gµν (x )

This naturally incorporates the equivalence principle.

2.7 The Equivalence Principle
All objects fall the same way in a gravitational field. Einstein elevated this to saythat gravity and acceleration are locally indistinguishable.
Accelerated Observers
An observer with constant acceleration a follows a hyperbola:

x (τ) = c2

a
cosh

(aτ
c

)
, t (τ) = c

a
sinh

(aτ
c

)
In Rindler coordinates, the Minkowski metric becomes:

ds2 = −
(
1 + aρ

c2

)2
c2dτ2 + dρ2 + dy 2 + dz 2

Tidal Forces
While gravity can be transformed away locally, tidal forces—second derivativesof the potential—remain. These manifest as deviations in nearby geodesics.
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2.8 Gravitational Time Dilation

The time component of the metric is:
g00(r ) = −

(
1 + 2Φ(r )

c2

)
Thus, proper time is:

dτ =

√
1 + 2Φ(r )

c2
d t

This leads to gravitational redshift:
ωA = ωB

(
1 + Φ(rA) − Φ(rB )

c2

)
2.9 Geodesics in Spacetime

Returning to the relativistic action:
S = −mc

∫
dσ

√
−gµν (x ) ¤xµ ¤xν

the geodesic equation becomes:
d 2xµ

dτ2
+ Γ

µ
νλ

dxν

dτ

dxλ

dτ
= 0

Alternatively, using the action:
S =

∫
dτ gµν

dxµ

dτ

dxν

dτ

gives the same result, provided we impose the constraint:
gµν

dxµ

dτ

dxν

dτ
= −c2 (timelike) or = 0 (null)

This summarizes the elegant unification of motion and geometry: particlestraverse geodesics determined by spacetime curvature.
2.10 A First Look at the Schwarzschild Metric

To explore planetary motion and light bending in general relativity, we requirethe spacetime geometry produced by a spherically symmetric mass M . TheSchwarzschild solution, derived later, is:
ds2 = −

(
1 − 2GM

r c2

)
c2d t 2 +

(
1 − 2GM

r c2

)−1
dr 2 + r 2(dθ2 + sin2 θdφ2)

Far from the mass (r → ∞), this reduces to the flat Minkowski metric. The term
Rs = 2GM

c2
is called the Schwarzschild radius. For r = Rs , the metric appearssingular (more on this in later chapters).
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2.11 The Geodesic Equations

We compute geodesics using the action:
S =

∫
dτ

[
−A(r )c2 ¤t 2 + A−1(r ) ¤r 2 + r 2( ¤θ2 + sin2 θ ¤φ2)

]
with A(r ) = 1 − Rs

r . By symmetry, motion is confined to the equatorial plane(θ = π
2 ).Two cyclic coordinates yield conserved quantities:

• Energy: E = A(r )c2 ¤t

• Angular Momentum: l = r 2 ¤φ

These reduce the dynamics to an effective potential problem in the radialcoordinate.

2.12 Planetary Orbits in Newtonian Mechanics
In Newtonian gravity, planetary motion is governed by:

d 2u

dφ2
+ u =

GM

l 2

with u = 1
r . The solution is:

u (φ) = GM

l 2
(1 + e cosφ)

which describes an elliptical orbit.

2.13 Planetary Orbits in General Relativity
In general relativity, the equation for u = 1/r becomes:

d 2u

dφ2
+ u =

GM

l 2
+ 3GM

c2
u2

The additional 3GM
c2

u2 term leads to precession of the perihelion. The total pre-cession per orbit is:
∆φ =

6πGM

a (1 − e2)c2
This agrees with the observed 43 arcseconds per century for Mercury, a historicsuccess of general relativity.
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2.14 The Pull of Other Planets

In practice, the motion of Mercury is also affected by other planets (especiallyJupiter). Accounting for these effects is crucial to isolate the relativistic correction.Once done, the residual precession matches GR predictions remarkably well.

2.15 Light Bending
Photons follow null geodesics in the Schwarzschild spacetime. We define theimpact parameter b = l

E /c , and the deflection angle is calculated perturbatively:
δφ =

4GM

bc2

Newtonian gravity predicts only half this amount, due to ignoring spacetimecurvature’s effect on spatial paths.This prediction was famously confirmed during the 1919 solar eclipse, estab-lishing GR’s empirical validity.
Comparison with Newtonian Prediction
The Newtonian result accounts only for the g00 term in the metric. General relativityincludes spatial curvature (via gr r ) as well, doubling the deflection.

2.16 Closing Remarks on Geodesics
The geodesic equation:

d 2xµ

dτ2
+ Γ

µ
νλ

dxν

dτ

dxλ

dτ
= 0

successfully recovers all relativistic corrections to motion. Its elegance lies in itsgeometric nature: motion is entirely determined by the curvature of spacetime.All test particles, massive or massless, follow these paths dictated by the Einsteinequivalence principle.



3. Differential Geometry
To understand general relativity, one must understand the geometric structureof spacetime. This chapter introduces the essential concepts of differentialgeometry—manifolds, tangent vectors, vector fields, and derivatives—needed todescribe curved spacetimes. We do not aim for rigor, but for a logically coherentframework suited for physical intuition.

3.1 Manifolds
A manifold is an n-dimensional space that locally looks like Òn but can havenon-trivial global properties.
Topological Spaces
A topological space M is a set with a topology T : a collection of open subsetssatisfying:

• ∅,M ∈ T

• Finite intersections of open sets are open.
• Arbitrary unions of open sets are open.

The Hausdorff condition ensures that any two points have disjoint neighborhoods.
Differentiable Manifolds
A manifold is covered by coordinate charts (Uα ,φα ) where φα : Uα → Òn aresmooth. Compatibility requires that transition maps φβ ◦ φ−1

α are smooth.Examples:
• Òn : trivial manifold
• Sn : requires at least two charts
• T 2 = S1 × S1: global topology differs from Ò2

14



3.2. Tangent Spaces 15
Maps Between Manifolds
Smooth maps f : M → N pull back functions and push forward derivatives.These become crucial when defining vector fields and tensors.

3.2 Tangent Spaces
At each point p ∈ M , the tangent space Tp (M ) contains all possible tangentvectors at p .
Tangent Vectors
We define vectors at p as directional derivatives acting on functions:

V (f ) = d

dλ
f (xµ (λ))

����
λ=0

Given coordinates xµ , basis vectors are {
∂

∂xµ

}.
Vector Fields
A vector field assigns to each point p ∈ M a vectorV ∈ Tp (M ). In coordinates:

V =V µ (x ) ∂

∂xµ

They obey the Leibniz rule when acting on functions.
Integral Curves
Given a vector fieldV , an integral curve xµ (λ) satisfies:

dxµ

dλ
=V µ (x )

These curves represent "flow lines" of the field.
The Lie Derivative
Given a vector field X , the Lie derivative of another fieldY measures the changeofY along the flow of X :

LXY = [X ,Y ]
This is the commutator of vector fields. It encodes how one field "drags" anotheralong.
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3.3 Useful Notes

• Tangent vectors form a vector space.
• Coordinate transformations change the basis ofTp (M ).
• The Lie derivative is a coordinate-free concept.
• Not all vector fields generate diffeomorphisms (invertible maps).

3.4 Tensors
We now define tensors, the primary objects that inhabit our manifolds and encodephysical information.
Covectors and One-Forms
At a point p ∈ M , the dual space to the tangent space Tp (M ) is the cotangent
spaceT ∗

p (M ). Elements of this space are covectors, or one-forms.Given a coordinate basis {∂/∂xµ} for Tp (M ), the dual basis for T ∗
p (M ) isdenoted {dxµ}, satisfying:

dxµ

(
∂

∂xν

)
= δ

µ
ν

Any one-form ω can be written as:
ω = ωµdx

µ

The exterior derivative of a function f yields the one-form:
df =

∂f

∂xµ
dxµ

The Lie Derivative Revisited
The Lie derivative LXω of a one-form ω along a vector field X is defined as:

(LXω) (Y ) = X (ω (Y )) − ω ( [X ,Y ])
This encodes how differential forms change along flows generated by vectorfields.
Tensors and Tensor Fields
A tensor at p is a multilinear map that takes k vectors and l one-forms:

T : T ∗
p (M ) × · · · ×T ∗

p (M )︸                       ︷︷                       ︸
k

×Tp (M ) × · · · ×Tp (M )︸                      ︷︷                      ︸
l

→ Ò

Tensors transform under coordinate changes via appropriate Jacobians. A tensor
field assigns a tensor to each point of the manifold smoothly.



3.5. Differential Forms 17
3.5 Differential Forms

Differential forms are totally antisymmetric tensors of type (0, p), with deepapplications in geometry and physics.
The Exterior Derivative
The exterior derivative d : Λp (M ) → Λp+1(M ) satisfies:

• Linearity: d (ω + η) = dω + dη

• Leibniz Rule: d (ω ∧ η) = dω ∧ η + (−1)pω ∧ dη

• Nilpotency: d 2 = 0

Forms You Know and Love
Familiar vector calculus operations are recast:

• Gradient: df
• Curl: dω for 1-forms
• Divergence: ∗d ∗ ω, using the Hodge star

A Sniff of de Rham Cohomology
Since d 2 = 0, we define:

Z p (M ) = ker(d : Λp → Λp+1), Bp (M ) = im(d : Λp−1 → Λp)

The de Rham cohomology is H p (M ) = Z p (M )/Bp (M ), which classifies closedforms modulo exact ones.
Integration
A p-form can be integrated over a p-dimensional manifold. Integration is coordinate-independent and respects orientation. For example, for a 2-form ω on a 2Dsurface: ∫

M
ω =

∫
M
ω12dx

1 ∧ dx 2

Stokes’ Theorem
The grand unification of various integral theorems:∫

M
dω =

∫
∂M

ω

Examples:
• For 0-forms: Fundamental Theorem of Calculus
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• For 1-forms: Green’s Theorem
• For 2-forms: Gauss’ Divergence Theorem
This single theorem encompasses much of classical vector calculus and is acornerstone of modern differential geometry.



4. Riemannian Geometry
To describe gravity as geometry, we introduce a key player: the metric, a sym-metric, non-degenerate (0,2)-tensor field that allows us to measure distances,angles, and curvature on a manifold. This section develops the formalism ofRiemannian and Lorentzian geometry, including covariant derivatives, curvature,and the role of the metric in field theory.

4.1 The Metric
The metric g assigns an inner product on the tangent spaceTp (M ) at every point
p ∈ M :

g = gµν (x )dxµ ⊗ dxν

or, in shorthand, ds2 = gµν (x )dxµdxν

Riemannian Manifolds
These have positive-definite metrics (e.g., Euclidean space):

g = δµνdx
µ ⊗ dxν

|X | =
√
g (X ,X ) and g (X ,Y ) = |X | |Y | cos θ

Lorentzian Manifolds
Here, one diagonal component is negative (e.g., Minkowski space). The signatureis typically (− + ++). Lightcones arise from the metric structure and define causalstructure.
The Joys of a Metric

• Defines lengths, angles, and volumes.
• Provides isomorphism between vectors and covectors.
• Enables raising/lowering of indices via Xµ = gµνX

ν

19
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The Volume Form
For Riemannian manifolds:

v =
√
det gµν dx 1 ∧ · · · ∧ dx n

For Lorentzian manifolds:
v =

√−g dx 0 ∧ · · · ∧ dx n−1

Hodge Star and Inner Products
The Hodge dual maps p-forms to (n − p)-forms:

(∗ω)µ1...µn−p =
1

p !
√
|g | ϵµ1...µn−pν1...νpων1...νp

This allows defining inner products on Λp (M ):
⟨η,ω⟩ =

∫
M
η ∧ ∗ω

Hodge Theory
The adjoint of the exterior derivative:

d † = ±(−1)np+n+1 ∗ d∗
The Laplacian:

∆ = dd † + d †d

Harmonic forms satisfy ∆ω = 0 and are both closed and co-closed.
4.2 Connections and Curvature

The Covariant Derivative
To differentiate tensor fields on a manifold, we introduce a connection +. Forvector fields X ,Y :

+XYIn coordinates, the covariant derivative becomes:
+µV

ν = ∂µV
ν + ΓνµλV

λ

+µων = ∂µων − Γλµνωλ

Torsion and Curvature
The torsion tensor:

T (X ,Y ) = +XY − +YX − [X ,Y ]
The Riemann curvature tensor:

R
ρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γ

ρ
µλ
Γλνσ − Γ

ρ
νλ
Γλµσ
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The Levi-Civita Connection
The unique connection that is:

• Torsion-free: T = 0

• Metric-compatible: +g = 0

This leads to the Christoffel symbols:
Γ
ρ
µν =

1

2
g ρσ (∂µgνσ + ∂νgµσ − ∂σgµν)

The Divergence Theorem
If j µ is a vector field:∫

M
+µj

µ
√
|g | d nx =

∫
∂M

j µnµ
√
|h | d n−1x

The Maxwell Action
An elegant application:

S = −1
4

∫
M
FµνF

µν
√
|g | d 4x

where Fµν = ∂µAν − ∂νAµ

4.3 Parallel Transport
Parallel transport provides a way to move vectors along curves while keepingthem “unchanged” with respect to the connection.A vector fieldY is said to be parallely transported along a curve with tangent
X if:

+XY = 0

This leads to:
dY µ

dτ
+ X νΓ

µ
νρY

ρ = 0

These are first-order differential equations solvable given an initial vector.
Path Dependence
Parallel transport is path dependent due to curvature. The change in a vectortransported around a loop reveals information about the curvature tensor.
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4.4 Geodesics Revisited

A geodesic is a curve whose tangent vector X satisfies:
+XX = 0 ⇒ d 2xµ

dτ2
+ Γ

µ
ρν
dx ρ

dτ

dxν

dτ
= 0

This is the geodesic equation again, now viewed through the lens of paralleltransport.
Normal Coordinates
At any point p ∈ M , one can construct coordinates such that:

gµν (p) = ηµν, ∂ρgµν (p) = 0 ⇒ Γ
µ
νρ (p) = 0

These are called normal coordinates, and locally they make spacetime look flat.
4.5 Geodesic Deviation

To study how nearby geodesics deviate, introduce a deviation vector ηµ. Thegeodesic deviation equation is:
D 2ηµ

Dτ2
= R

µ
νρσu

νuρησ

This equation plays a central role in gravitational tidal effects.
4.6 More on the Riemann Tensor and Its Friends

The Ricci and Einstein Tensors
The Ricci tensor and scalar:

Rµν = R
ρ
µρν, R = g µνRµν

The Einstein tensor:
Gµν = Rµν −

1

2
gµνR

This tensor satisfies +µGµν = 0 due to the Bianchi identity.
Connection 1-Forms and Curvature 2-Forms
Using a non-coordinate basis {êa}, define the connection 1-forms:

ωa
b = Γacb θ̂

c

and curvature 2-forms:
Ra

b = dωa
b + ωa

c ∧ ωc
bThese encapsulate the curvature in elegant differential form language.
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An Example: Schwarzschild Metric
In spherical coordinates, the Schwarzschild line element is:

ds2 = −
(
1 − 2GM

r

)
d t 2 +

(
1 − 2GM

r

)−1
dr 2 + r 2dΩ2

Curvature tensors derived from this metric confirm the central role of Rµν = 0 invacuum solutions.
Relation to Yang-Mills Theory
A formal analogy exists:

[+µ,+ν]V σ = Rσ
ρµνV

ρ ↔ [Dµ,Dν] = Fµν

Here, curvature acts like a field strength, and the Christoffel connection parallelsa gauge potential.



5. Einstein’s Equations
Having laid the geometric foundations of spacetime, we now ask: how doesgravity emerge dynamically from this structure? In General Relativity, the metric
gµν (x ) is a dynamical field, and the Einstein equations describe its evolution.These are derived from an action principle, culminating in the Einstein-Hilbertaction, the cornerstone of the theory.

5.1 The Einstein-Hilbert Action
The simplest action intrinsic to the metric is:

S =

∫
d 4x

√−gR (4.1)
This action is known as the Einstein-Hilbert action. Here, g = det gµν and R isthe Ricci scalar curvature. The minus sign under the square root arises from theLorentzian signature of spacetime.
Why It Works

- The Levi-Civita connection depends on the metric: Γ ∼ ∂g - The curvaturedepends on the connection: R ∼ ∂Γ + Γ2 - Therefore, the action involves secondderivatives of the metric, similar to other second-order field theories.
Varying the Action
To derive the equations of motion, we vary gµν → gµν + δgµν . The variation yields:

δS =

∫
d 4x

[
(δ√−g )g µνRµν +

√−g (δg µν)Rµν +
√−gg µνδRµν

] (4.2)
Key identities: - Variation of the inverse metric:

δg µν = −g µρg νσδgρσ

- Variation of the determinant:
δ
√−g = −1

2

√−gg µνδgµν

24
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Final Result
After discarding total derivatives and simplifying, the Euler-Lagrange equationsfrom the Einstein-Hilbert action give:

Rµν −
1

2
gµνR = 0

This is the vacuum Einstein field equation.

5.2 An Aside on Dimensional Analysis
Let us assess the dimensions of Newton’s constant G . In natural units (c = ħ = 1),it has dimension:

[G ] = M −2

This defines the reduced Planck mass:
M 2pl =

1

8πG
⇒ S =

1

2
M 2pl

∫
d 4x

√−gR

Although it is tempting to set G = 1, dimensional analysis is valuable and weretain G in this course.

5.3 The Cosmological Constant
There exists a simpler scalar invariant one can add to the action:

S =
1

16πG

∫
d 4x

√−g (R − 2Λ)

This is the Einstein-Hilbert action with a cosmological constant Λ. Varying thisaction leads to the modified field equations:
Rµν −

1

2
Rgµν + Λgµν = 0

or, equivalently (upon contraction):
Rµν = Λgµν

The cosmological constant acts like a vacuum energy density.



6. Black Holes
Black holes are compelling solutions of the Einstein equations, exhibiting uniquephysical and geometrical properties. This chapter begins by examining theSchwarzschild metric and gradually introduces techniques to understand itshorizon and singularity structure.

6.1 The Schwarzschild Solution
We’ve previously encountered the Schwarzschild metric:

ds2 = −
(
1 − 2GM

r

)
d t 2 +

(
1 − 2GM

r

)−1
dr 2 + r 2dΩ2 (6.1)

This is a vacuum solution Rµν = 0, describing the spacetime outside a sphericalmass M . The metric component g00 agrees with the Newtonian potential:
Φ = −GM

r

Komar Mass
The Schwarzschild solution admits a timelike Killing vector K = ∂t . The Komarintegral gives the mass:

MKomar = − 1

8πG

∫
S2
⋆dK = M

This provides a coordinate-independent way to extract the mass from spacetimegeometry.
6.2 Birkhoff’s Theorem

This theorem states that any spherically symmetric vacuum solution is necessarilystatic and asymptotically flat. The Schwarzschild solution is the unique suchsolution: - No gravitational radiation exists in a spherically symmetric vacuum. -The exterior solution remains unchanged even if the star pulsates.
26
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6.3 A First Look at the Horizon

At r = 2GM , the Schwarzschild radius, we encounter coordinate singularities:
gt t → 0, gr r → ∞

However, this is not a true curvature singularity. The Kretschmann scalar remainsfinite:
RµνρσR

µνρσ =
48G2M 2

r 6Thus, the singularity at r = 2GM is a coordinate artifact.

6.4 Eddington-Finkelstein Coordinates
To remove the coordinate singularity, introduce the ingoing null coordinate:

v = t + r∗ where r∗ = r + 2GM log
��� r

2GM
− 1

���
The metric becomes:

ds2 = −
(
1 − 2GM

r

)
dv 2 + 2dvdr + r 2dΩ2

This form is regular at r = 2GM , extending the manifold across the horizon.Radial null geodesics satisfy:
dr

dv
=

1

2

(
1 − 2GM

r

)
indicating that nothing escapes from r < 2GM .
Lightcones at the Horizon

- Outside the horizon (r > 2GM ), light cones tilt inward. - At the horizon (r =
2GM ), light cones are tangent to the horizon. - Inside the horizon (r < 2GM ),all future-directed trajectories move toward smaller r .

Result: Once inside, nothing—not even light—can escape.

6.5 Kruskal Spacetime
To uncover the true structure of the Schwarzschild metric and avoid the horizonsingularity at r = 2GM , we introduce Kruskal coordinates.
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Kruskal Coordinates
Starting from the tortoise coordinate:

r∗ = r + 2GM log
��� r

2GM
− 1

���
we define null coordinates:

u = t − r∗ v = t + r∗

Then, introduce Kruskal-Szekeres coordinates:
U = −e−u/4GM V = ev/4GM

The metric becomes:
ds2 = −32G

3M 3

r
e−r /2GM dUdV + r 2dΩ2

This form is regular at the horizon and fully extends the spacetime across r =
2GM .
Global Structure

- The singularity at r = 0 remains a true curvature singularity. - Kruskal spacetimecontains four regions: - Region I: r > 2GM , our external universe. - Region II:
r < 2GM , inside the black hole. - Region III: A white hole region. - Region IV: Asecond asymptotically flat universe.

Figure 6.1: Kruskal diagram: light cones are at 45°, making causal structure transparent.
Note: No observer in Region I can access Region II or escape from it. Similarly,no information can come out of Region II.
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6.6 Forming a Black Hole: Weak Cosmic Censorship

While the eternal Schwarzschild black hole is mathematically elegant, real blackholes form from collapsing matter. This motivates the cosmic censorship con-
jecture.
Gravitational Collapse
We study a collapsing dust ball (Oppenheimer-Snyder model): - Interior: de-scribed by a closed Friedmann-Robertson-Walker (FRW) universe. - Exterior:Schwarzschild metric.Matching the metrics across the boundary shows that the star’s surface movesinward, eventually crossing the Schwarzschild radius, forming an event horizon.
Penrose Diagrams
To visualize causal structure, Penrose diagrams compactify spacetime. For col-lapsing stars: - The singularity lies in the future of the horizon. - There is noRegion III or IV; those are artifacts of eternal black holes. - This more physicalpicture is consistent with a universe beginning without a singularity in the past.

Weak Cosmic Censorship Conjecture: All singularities are hidden behindevent horizons. No “naked singularities” are visible to distant observers.
Motivation: Ensures determinism in general relativity. Otherwise, the futureevolution of spacetime could not be uniquely predicted from initial data.



7. Simulation Theory
Abstract
The Schwarzschild metric is one of the most fundamental solutions to the EinsteinField Equations and represents the spacetime geometry outside a non-rotating,spherically symmetric mass. This project aims to explore and visualise geodesics(the paths of particles and light) in the Schwarzschild spacetime. We numericallyintegrate the geodesic equations and render the resulting trajectories using ani-mations. Different physical scenarios like photon spheres, perihelion precession,and horizon approaches are examined.

Objective
Our goal is to simulate the geodesic motion of massive and massless particles inSchwarzschild spacetime using numerical methods. The objectives include:

• Understanding and solving geodesic equations in Schwarzschild geometry.
• Simulating trajectories using numerical integration techniques.
• Visualising different physical cases of particle motion with animations.
• Identifying and interpreting key relativistic effects like perihelion precessionand the photon sphere.

Introduction
In General Relativity, geodesics represent the paths of free-falling particles in acurved spacetime. The Schwarzschild solution is a static, spherically symmetricvacuum solution to Einstein’s equations, described by the metric:

ds2 = −
(
1 − 2M

r

)
d t 2 +

(
1 − 2M

r

)−1
dr 2 + r 2dθ2 + r 2 sin2 θ, dφ2

Here, M represents the mass of the black hole, and (t , r , θ,φ) are the Schwarzschildcoordinates. The event horizon lies at r = 2M . In this project, we study test
30
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particle dynamics confined to the equatorial plane (θ = π/2), which simplifiesthe analysis without loss of generality.

Geodesic Equations
The motion of particles and light is governed by the geodesic equations derivedfrom the Schwarzschild metric. The Lagrangian for the system in the equatorialplane θ = π/2 is:

L = −
(
1 − 2M

r

)
¤t 2 +

(
1 − 2M

r

)−1
¤r 2 + r 2 ¤φ2

From the Euler-Lagrange equations, two constants of motion can be identified:
E =

(
1 − 2M

r

)
¤t L = r 2 ¤φ

where E is the energy per unit mass and L is the angular momentum per unitmass.Substituting these into the metric, we obtain the radial equation of motion:(
dr

dτ

)2
= E 2 −

(
1 − 2M

r

) (
ϵ + L2

r 2

)
where ϵ = 1 for massive particles and ϵ = 0 for photons. This equation formsthe basis of our numerical integration to obtain particle trajectories. section*ODESystem for Numerical Integration To numerically solve the geodesic equations,we first convert the second-order differential equations into a system of first-order ordinary differential equations (ODEs). This is necessary as most numericalsolvers, including those in standard Python libraries like SciPy, operate on first-order systems.The Schwarzschild metric in the equatorial plane (θ = π/2) leads to thegeodesic Lagrangian:

L = −
(
1 − 2M

r

)
¤t 2 +

(
1 − 2M

r

)−1
¤r 2 + r 2 ¤φ2

From this Lagrangian, we derive the following conserved quantities:
E =

(
1 − 2M

r

)
¤t L = r 2 ¤φ

Substituting into the metric constraint, the radial equation of motion becomes:(
dr

dτ

)2
= E 2 −

(
1 − 2M

r

) (
ϵ + L2

r 2

)
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where ϵ = 1 for massive particles and ϵ = 0 for photons.To prepare for numerical integration, we define the state vector ®y = [t , r ,φ, pr ]where pr = ¤r . Using this, the first-order system of ODEs is:
d t

dλ
=

E

1 − 2M
r

dr

dλ
= pr

dφ

dλ
=

L

r 2
dpr
dλ

= −M
r 2

(
E 2

(1 − 2M
r )2

)
+ L2

r 3
− M

r 2

(
1 − 2M

r

)
These equations can now be passed to a numerical integrator such as scipy.integrate.solveto obtain trajectories for test particles around a Schwarzschild black hole. sec-tion*Conserved Quantities and Initial Conditions In the Schwarzschild spacetime,the conservation laws are derived from the symmetries of the metric. Due totime translational invariance and spherical symmetry, the energy and angularmomentum of a test particle are conserved along its geodesic motion.
Energy and Angular Momentum
The conserved energy E and angular momentum L are given by:

E =

(
1 − 2M

r

)
¤t L = r 2 ¤φ

Here, ¤t and ¤φ are derivatives with respect to the affine parameter λ, and M is theSchwarzschild radius (related to the mass of the black hole).
Conserved Quantities and Initial Conditions
From the geodesic equations derived above, we can see that the Schwarzschildspacetime has two constants of motion: the specific energy E and the specificangular momentum L.The conserved quantities are:

E =

(
1 − 2M

r

)
d t

dλ
, L = r 2

dφ

dλ
.

These equations can be used to find d t
dλ and dφ

dλ in terms of r :
d t

dλ
=

E

1 − 2M
r

,
dφ

dλ
=

L

r 2
.

These expressions are substituted into the radial equation and help reducethe order of the ODE system.To solve the geodesic equations numerically, we need to define initial condi-tions for the radial position r , the radial velocity dr
dλ , the coordinate time t , and theazimuthal angle φ.Note that t and φ can be set to zero initially without loss of generality due tothe symmetry of the Schwarzschild metric. The values of E , L, and initial r and

dr
dλ are chosen depending on the physical situation to be simulated.



8. Simulations
8.1 Photon Sphere

Parameters Used:

E = 1.0, Lz = 3
√
3, ε = 0, r0 = 3.0, λmax = 12

Physical Significance:The photon sphere is a critical surface at r = 3M where massless particles(photons) can orbit a Schwarzschild black hole in unstable circular orbits. Anydeviation causes the photon to either escape or fall into the black hole.
Mathematical Context:The effective potential for a photon is given by:

Veff(r ) =
(
1 − 2M

r

)
L2
z

r 2

The condition for circular orbits:
dVeff
dr

= 0 ⇒ r = 3M

Observation from Simulation:The simulation shows a photon circling the black hole at r = 3M , tracing a perfectcircular trajectory as expected.

8.2 Perihelion Precession
Parameters Used:

E = 0.97, Lz = 7.0, ε = −1, r0 = 20.0, λmax = 1000

Physical Significance:The orbit of a massive particle is not closed due to spacetime curvature, leadingto the precession of the perihelion with each revolution — famously observed inMercury’s orbit.
33
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Mathematical Context:The effective potential is:

Veff(r ) =
(
1 − 2M

r

) (
1 + L2

z

r 2

)
The particle oscillates between rmin and rmax, with:

E 2 < 1 (Bound Orbit)
Observation from Simulation:The particle traces a rosette-like orbit, showing the classic relativistic precessionof the perihelion.

8.3 Event Horizon Approach
Parameters Used:

E = 1.0, Lz = 0.0, ε = −1, r0 = 10.0, λmax = 250

Physical Significance:With zero angular momentum, the massive particle undergoes pure radial infallinto the black hole.
Mathematical Context:The radial equation:

dr

dτ
= −

√
E 2 −

(
1 − 2M

r

)
At r = 2M , the particle reaches the event horizon.

Observation from Simulation:The particle falls straight inward, disappearing at the horizon — in line with GRpredictions.
8.4 Whirlzoom Motion

Parameters Used:

E = 0.995, Lz = 5.0, ε = −1, r0 = 8.0, λmax = 500

Physical Significance:A near-critical orbit in which a massive particle executes multiple whirls near theblack hole before escaping. This motion is relevant in EMRIs.
Mathematical Context:Near the ISCO (innermost stable circular orbit), the particle enters a region ofsteep potential:

Veff(r ) =
(
1 − 2M

r

) (
1 + L2

z

r 2

)
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Small perturbations yield whirl-zoom dynamics.

Observation from Simulation:The trajectory starts far, zooms in to execute several tight orbits, and finally zoomsout.
8.5 PolarPS Case

The PolarPS case refers to the simulation of a photon orbiting at the photonsphere radius in Schwarzschild spacetime. The photon sphere is a sphericalregion where gravity is strong enough that photons can travel in circular orbits.This occurs at a radial coordinate:
r = 3M

where M is the mass of the central black hole.This case demonstrates an unstable circular photon orbit. Any small pertur-bation would cause the photon to either escape to infinity or fall into the blackhole. To simulate this, we initialise the geodesic equations with the followingparameters:
M = 1 r0 = 3M = 3

dr

dλ

����
λ=0

= 0 L = 3.464 E = L/r0 = 1.154

These values ensure that the photon starts at r = 3M and stays in a nearlycircular orbit, tracing the photon sphere.
8.6 PolarPeri Case

The PolarPEri case models the perihelion precession of a massive test particle.In Newtonian gravity, elliptical orbits are closed, but in General Relativity, thepresence of spacetime curvature causes the perihelion to advance with eachorbit. This effect is especially noticeable near strong gravitational sources.In this simulation, the following parameters are used:
M = 1 r0 = 7

dr

dλ

����
λ=0

= 0 L = 4 E = 0.943

These values result in an elliptical-like orbit around the black hole with aclearly observable precession of the perihelion over time. The test particle doesnot maintain a fixed elliptical orbit but rotates slowly in the azimuthal direction,forming a rosette pattern.
8.7 Code

The relevant code is available on the following link: https://drive.google.com/
file/d/1DBqBbUvOIQLz9si5t7aumEDrv4qPp-x5/view?usp=sharing

https://drive.google.com/file/d/1DBqBbUvOIQLz9si5t7aumEDrv4qPp-x5/view?usp=sharing
https://drive.google.com/file/d/1DBqBbUvOIQLz9si5t7aumEDrv4qPp-x5/view?usp=sharing
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Overview
This section explains the Python code written to simulate geodesic trajecto-ries around a Schwarzschild black hole using Manim. The simulation solves thegeodesic equations and visualizes the result with aesthetic animations.
Core Libraries
The implementation uses several Python libraries:

• NumPy: for numerical operations.
• SciPy: to integrate differential equations with solveivp.
• Pandas: to store trajectory data.
• Manim: to animate the simulation.

Geodesic Simulator Class
This class encapsulates the physics:

• Initialized with parameters: energy E , angular momentum Lz , rest mass ε,and initial radius r0.
• Encodes Schwarzschild geodesic equations as an ODE system.
• Uses solveivp to compute the trajectory in terms of affine parameter λ.
• Stores the result as a Pandas DataFrame for easy access.

Scene Setup and Logic
For each case, a subclass of BaseSimulationScene is used. This manages allrendering:

• The scene has a white background to enhance contrast.
• Concentric circles and radial lines mimic Schwarzschild coordinates.
• A central black disk represents the event horizon at r = 2M .
• A green dot shows the test particle. TracedPath leaves behind its trail.
• A timer using ValueTracker and DecimalNumber displays evolving λ.

Animation Process
1. A dictionary of preset parameters selects the simulation case.
2. The geodesic is computed with the simulator.
3. Polar coordinates are converted to Cartesian using x = r cosφ, y = r sinφ.
4. interp1d is used to allow smooth animation based on these coordinates.



8.8. Simulation Videos 37
Design Considerations
The simulation emphasizes modularity and clarity:

• Reusable: Code components are reusable across different physical scenar-ios.
• Readable: Physics and rendering are cleanly separated.
• Accurate: Based on rigorous geodesic equations from General Relativity.
• Informative: Designed for both educational and scientific use.

8.8 Simulation Videos
The relevant Simulation Videos are available at the following links:
ProtonSphere: https://drive.google.com/file/d/1tighmKrIB7FX2o_74WulCj5FeueAPXHH/
view?usp=sharing
Perihelion Precession: https://drive.google.com/file/d/1tighmKrIB7FX2o_74WulCj5FeueAPXHH/
view?usp=sharing
EventHorizonApproach: https://drive.google.com/file/d/1hk7OcyTpyxjgnvB334Hnx1ibvsCQc6it/
view?usp=sharing
WhirlZoomMotion: https://drive.google.com/file/d/1K5NGyqelhLEvbMHc2TG-MvMNGK786YaC/
view?usp=sharing
PolarPSMotion: https://drive.google.com/file/d/1VG3rgXzlzRcasEneNWNFd982p8KdSvGP/
view?usp=sharing
PolarperiMotion: https://drive.google.com/file/d/17tAgSQIuDNjuyRx0Uh-1e8-DQQJ9vFM7/
view?usp=sharing

https://drive.google.com/file/d/1tighmKrIB7FX2o_74WulCj5FeueAPXHH/view?usp=sharing
https://drive.google.com/file/d/1tighmKrIB7FX2o_74WulCj5FeueAPXHH/view?usp=sharing
https://drive.google.com/file/d/1tighmKrIB7FX2o_74WulCj5FeueAPXHH/view?usp=sharing
https://drive.google.com/file/d/1tighmKrIB7FX2o_74WulCj5FeueAPXHH/view?usp=sharing
https://drive.google.com/file/d/1hk7OcyTpyxjgnvB334Hnx1ibvsCQc6it/view?usp=sharing
https://drive.google.com/file/d/1hk7OcyTpyxjgnvB334Hnx1ibvsCQc6it/view?usp=sharing
https://drive.google.com/file/d/1K5NGyqelhLEvbMHc2TG-MvMNGK786YaC/view?usp=sharing
https://drive.google.com/file/d/1K5NGyqelhLEvbMHc2TG-MvMNGK786YaC/view?usp=sharing
https://drive.google.com/file/d/1VG3rgXzlzRcasEneNWNFd982p8KdSvGP/view?usp=sharing
https://drive.google.com/file/d/1VG3rgXzlzRcasEneNWNFd982p8KdSvGP/view?usp=sharing
https://drive.google.com/file/d/17tAgSQIuDNjuyRx0Uh-1e8-DQQJ9vFM7/view?usp=sharing
https://drive.google.com/file/d/17tAgSQIuDNjuyRx0Uh-1e8-DQQJ9vFM7/view?usp=sharing
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