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1. Introduction
1.1 General Relativity and the Equivalence Principle

At the cornerstone of General Relativity lies the equivalence principle, which states that the
effects of gravity are indistinguishable from the effects of acceleration. There’s no way an
observer can differentiate between being in a uniform gravitational field and being in an
accelerating reference frame. In other words, with some particular coordinate transformation,
the effect of free-fall vanishes.

Einstein even generalised this to include non-uniform gravitational fields, stating that
there exists local inertial frames, in which the effects of any gravitational field will vanish.

Figure 1.1: A figure depicting the path of light as observed by an outside oberver (left) and by a
person on the spaceship (right).

Consider a simple scenario where a spaceship is accelerating in the z-direction with a
beam of light travelling in the x-direction. While the beam of light is travelling in a stright
line for an oberver outside, from inside the spaceship, the path of the light beam will look
curved. This is indistinguishable from the effect of gravity on light. Then what exactly is the
distinguishing factor between a clever coordinate transformation and a gravitational field?
The answer lies in tidal forces. As we have discussed only the local effects till now, there is no
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1.1. General Relativity and the Equivalence Principle 2

coordinate transformation than can remove the effects of gravitational field globally.

In the following chapters, we will briefly discuss the mathematical framework of differen-
tial geometry that descibes gravitational fields. We how to describe spacetime geometry in
tensor notation, having been introduced to it in Special Relativity, with metric tensors. We
then discuss the Schwarzschild metric and black holes. We also attempt predict the trajectory
of matter or light near the vicinity of the black hole, thereby dicovering the concept of event
horizons and photospheres.



2. Mathematical Formulation
The core mathematical background of General Relativity lies in differential geometry. Here,
any space is generally defined by an n-dimensional manifold that, upon close inspection of
any small patch, looks indistinguishable from flat n-dimensional Euclidean space,Òn.

In Euclidean space,

ds2 = dxi2 (2.1)

Einstein realized that the problem of deciding whether or not a gravitation field was real
was similar to a problem that Riemann had explored, deciding whether or not a space was
flat. The core premise of general relativity is that gravity is not a force in the conventional
sense, but rather a manifestation of the curvature of spacetime.

For a general curved space however, the formula for the distance between two close points
becomes,

ds2 =gmnxdx
mdxn (2.2)

where gmn is the spacetime metric. Mathematically, it is a symmetric tensor defined at
every point in spacetime.

Weknow that geometry associatedwith the Special Theory of Relativity is theMinkowskian
geometry. It defines length, or proper distance (or proper time) as

ds2 =dx2 − dt2

or, dτ2 =dt2 − dx2 (2.3)

which is an invariant quantity across coordinate transformation. The Minkowskian
metric is defined to be gmn = diag−1, 1, 1, 1. The single negative sign is responsible for the
unique causal structure of spacetime, dividing vectors into time-like (ds2 < 0), space-like
(ds2 > 0), and light-like (ds2 = 0).

2.1 Flatness and Curvature
A flat geometry is one where all Euclid’s postulates are true. It cannot simply be characterized
in terms of the metric gi,j = δi,j . The defining diagnostic quantity, which is zero everywhere
the space is flat and non-zero otherwise, is called the Riemann curvature tensor.
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2.2. Einstein Equations 4

For this, we will use the concept of a covariant derivative of a tensor. For a general curved
spacetime, we need to take into account the change in the tensor, and the change in the
coordinate system. This is given by,

DrVm =∂rVm − Γt
rm V t, covariant derivative.

DrTmn =∂rTmn − Γt
rm Ttn − Γt

rn Tmt (2.4)

where Γ is known as the Christoffel symbol:

Γt
mn =

1
2

[
∂ngsm ∂mgsn − ∂sgmn

]
gst (2.5)

Consider a vector being transported along two paths. In a flat space two transported
vectors will be identical, DrDsVm = DsDrVm, but this is not true in curved space. The
Riemann Curvature Tensor (R), is hence defined using the difference in the two quantities,

DsDrVm −DrDsVm =R t
sr mVt

where R t
sr m ≜∂rΓ

t
sm − ∂sΓ

t
rm Γp

sm Γt
pr − Γp

rm Γt
ps (2.6)

2.1.1 Geodesics
As discussed before, a vector field V is said to be parallel transported along a curve with
tangent vector ifDpV

n = 0. This means the vector is kept “pointing in the same direction"
on the curved manifold. One can also prove that ifDV n = 0 along the curve, the length of V
is preserved.

A geodesic is a curve that parallel transports its own tangent vector. If along the curve the
derivative of the tangent vector is zero, that curve is

tm ≜
dxm

ds
dtn Γn

mr t
rdxm =0
dtn

ds
=− Γn

mr t
r dx

m

ds
=− Γn

mr t
rtm (2.7)

This describes a geodesic, or the “straightest possible line" on a curvedmanifold. In general
relativity, particles in free fall travel along geodesics of spacetime.

2.2 Einstein Equations
The Riemann tensor contains all the local information about the curvature of the manifold. It
possesses a number of important symmetries. By contracting its indices, we can form related
tensors that will be essential to formulate Einstein’s equations.



2.2. Einstein Equations 5

Contracting the first and third indices of the Riemann tensor yields the Ricci tensor,
Rµν = Rρ

µρν which is a symmetric 0, 2 tensor. A further contraction gives the Ricci scalar,
R = gµνRµν , a scalar function on the manifold.

A specific linear combination of these two quantities form the Einstein tensor,

Rµν − 1
2
gµνR =Gµν (2.8)

Following from the properties satisfied by the Riemann tensor, the covariant divergence
is zero DGµν = 0. This is important for consistency with the conservation of energy and
momentum.

2.2.1 The Einstein-Hilbert Action
The action principle of General Relativity describes the action over a spacetime manifold,
equipped with a metric of Lorentzian signature (g = det gµν ) as,

S =
√
−gRd4x (2.9)

This is called the Einstein-Hilbert action. The equations of motion can be now found by
applying the principle of least action, which states that the variation of the action with respect
to the field—in this case, the metric gµν must be zero. The variation δS is calculated as,

gµνx→ gµνx δgµνx (2.10)

Writing the Ricci scalar as R = gµνRµν , the Einstein-Hilbert action changes as

δS = d4x
(
δ
√
−ggµνRµν

√
−gδgµνRµν

√
−ggµνδRµν

)
(2.11)

In terms of the inverse metric δgµν ,

gρµg
µν = δνρ

⇒ δgρµg
µν gρµδg

µν = 0

⇒ δgµν = −gµρgνσδgρσ (2.12)

∴ the middle term in Eq. 2.11 is proportional to δgµν .
Now using the result that the variation of

√
−g is given by

δ
√
−g = −1

2

√
−ggµνδgµν (2.13)

we can write

δS = d4x
√
−g

(
Rµν −

1
2
Rgµν

)
δgµν

√
−ggµνδRµν (2.14)

By calculating the variation of Christoffel symbols and the Reimann tensor, one can write
the final term in the above equation as



2.2. Einstein Equations 6

gµνδRµν = +µX
µ with Xµ = gρνδΓµ

ρν − gµνδΓρ
νρ (2.15)

Hence we can now ignore this final term using divergence theorem to get,

δS =

(
Rµν −

1
2
gµνR

)
δgµν
√
−gd4x (2.16)

Setting δS = 0, we get the vacuum Einstein field equations:

Rµν − 1
2
gµνR =Gµν = 0 (2.17)

These equations describe the geometry of empty space. Solutions to these equations
include the trivial Minkowski spacetime, but also non-trivial solutions like the Schwarzschild
black hole and gravitational waves.

The Cosmological Constant
By multiplying the volume form by a constant, the modified action becomes

S =
√
−gR− 2Λd4x (2.18)

Where Λ is the cosmological constant. Its inclusion modifies the field equations to:

Gµν = Λgµν = 0 (2.19)

This term can be interpreted as an intrinsic energy density and pressure of the vacuum
itself. A positive Λ drives an accelerated expansion of the universe, consistent with modern
cosmological observations. It is analogous to the potential energy V in the definition of the
Lagrangian, L = T − V .



3. Black Holes
The Schwarzschild metric describes the unique, static, spherically symmetric solution to
the vacuum Einstein equations (Rµν = 0). Birkhoff’s Theorem states that any spherically
symmetric vacuum solution must be the Schwarzschild solution, hence the uniqueness. It
describes the spacetime outside any non-rotating, uncharged, spherical body. The metric is
given by the line element,

ds2 =−
(
1− 2MG

c2r

)
dt2

dr2(
1− 2MG

c2r

)
c2

1

c2
r2dΩ2 (3.1)

One has to note that the Schwarzschild solution is an idealization based on the assumption
that the massM is concentrated at a point. If the mass is spread out, this equation is not true
in the interior, but it is true in the exterior.

At the Schwarzschild radius, r = Rs = 2GMc2, there appears to be a singularity. However,
by calculating coordinate-invariant quantities like the Kretschmann scalar, one finds that the
curvature at Rs is finite. This indicates that this is just a coordinate singularity, an artifact of
the chosen coordinate system, and not a physical one. This surface is called the event horizon.

At r = 0, the Kretschmann scalar diverges, indicating a region of infinite curvature. This
is a genuine physical singularity where the theory of general relativity breaks down.

3.1 The Event Horizon & Photosphere
Let us know see how relativistic particles move in this metric. Consider a radial orbit where
c = 1.

−ds2 = dτ2 =
(
1− 2MG

r

)
dt2 − dr2(

1− 2MG
r

) − r2dΩ2︸    ︷︷    ︸
assume spherical symmetry

S =−M

√√√√(1− 2MG

r

)
− r2(

1− 2MG
r

)dt (3.2)

L =−M

√√√√(1− 2MG

r

)
− r2(

1− 2MG
r

) (3.3)
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3.1. The Event Horizon & Photosphere 8

Now consider Energy conservation using simple Hamiltonian mechanics.

Pr =
∂L

∂r
, radial momentum

H =Prr − L (3.4)

=

(
1− 2MG

r

)
m√(

1− 2MG
r

)
− r2(

1− 2MG
r

) (3.5)

=E, which needs to be constant

and, r2 =
(
1− 2MG

r

)2 − (
1− 2MG

r

)3
E2

r ≈
√
r − 2MG

MG
near the event horizon. (3.6)

This shows us that the particles slow down asymptotically as it approaches the event horizon.
Similar to the above method, one can also predict the behaviour of a light ray near a black

hole using classical mechanics.
The action is given by:

S =−M dτ

=−M

√√√√√√√
(
1− 2MG

r

)
︸           ︷︷           ︸

= F , say

dt2 − 1

1− 2MG
r︸        ︷︷        ︸

= G, say

dr2 − r2dΩ2

=−M
√
Fr −Grr2 − r2θ2dt (3.7)

where, L =−M
√
Fr −Grr2 − r2θ2 (3.8)

Now we calculate the angular and radial momenta.

L =Pθ

=
∂L

∂θ

=
mr2θ√

Fr −Grr2 − r2θ2
(3.9)

=mκ (3.10)

Pr =
∂L

∂r

=
mGr√

Fr −Grr2 − r2θ2
(3.11)

Here Pr is not conserved, but the energy is which is given by the classical Hamiltonian as
follows.
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H =Prr Lθ − L

=
Frm√

Fr −Grr2 − r2θ2
= E

For a circular orbit, E =
Frm√

Fr − r2θ2
(3.12)

L

M
=

r2θ√
Fr − r2θ2

=κ, reduced angular momentum (3.13)

Solving for θ:

κ2 =
r4θ2

Fr − r2θ2

κ2Fr =κ2r2θ2 r4θ2

θ2 =
κ2Fr

κ2r2 r4
(3.14)

Substituting,

E =
Frm√

Fr − r2θ2

E =

√
F
√
r2κ2 r4

r2
m

We want now to letM → 0 for a photon. In that case,

E =

√
FL

r
(3.15)

E =

√
1− 2MG

r L

r

logE =
1
2
log 1− 2MG

r
− log r

1
E

dE

dr
=

MG

rr − 2MG
− r − 2MG

rr − 2MG

=
3MG− r

rr − 2MG
(3.16)

We obtain an unstable equilibrium at r = 3MG which is also known as the photosphere
of a blackhole. Outside this radius, the photon will spiral out while inside the radius it will
spiral in.



4. Simulation
We can numerically simulate the trajectory of a particle near the blackhole by solving the
geodesic equation. In particular, for a non-rotating uncharged black hole, we apply the
Schwarzschild Metric (Eq. 3.1) which yields the following non-zero components of the metric
tensor,

gtt = −
(
1− 2M

r

)
(4.1)

grr =
1

1− 2M
r

(4.2)

gθθ = r2 (4.3)

gφφ = r2 sin2 θ (4.4)

whereM is the mass of the black hole and r is the distance from its center. Note that we
use natural units with G = c = 1 for simplicity. The event horizon of the blackhole will be,

REH = 2M (4.5)

The path of a free-falling particle (a geodesic) is described by the geodesic equation:

d2xα

dλ2
Γα
βγ

dxβ

dλ

dxγ

dλ
= 0 (4.6)

Here, λ is the affine parameter along the path (proper time τ for massive particles),
xα = t, r, θ, φ are the coordinates, and Γα

βγ are the Christoffel symbols of the second kind.
The Christoffel symbols are calculated from the metric tensor as follows.

Γα
βγ =

1
2
gαδ

(
∂gδβ
∂xγ

∂gδγ
∂xβ

−
∂gβγ
∂xδ

)
(4.7)

By solving the above equation with the Schwarzschild metric, we obtain the following

10



4.1. Solving ODEs using numerical intergation 11

non-zero Christoffel symbols.

Γt
rt = Γt

tr =
M

rr − 2M
(4.8)

Γr
tt =

Mr − 2M

r3
(4.9)

Γr
rr = −

M

rr − 2M
(4.10)

Γr
θθ = −r − 2M (4.11)

Γr
φφ = −r − 2M sin2 θ (4.12)

Γθ
rθ = Γθ

θr =
1
r

(4.13)

Γθ
φφ = − sin θ cos θ (4.14)

Γφ
rφ = Γφ

φr =
1
r

(4.15)

Γφ
θφ = Γφ

φθ =
cos θ
sin θ = cot θ (4.16)

4.1 Solving ODEs using numerical intergation
To solve the geodesic equation numerically, we convert the single second-order equation
into a system of eight first-order Ordinary Differential Equations (ODEs) which is solved in
parallel. Let us define the 4-velocity as pα = dxα

dλ , where λ is our affine parameter. The state
vector is then

Y =
(
xα, pα

)
=
(
t, r, θ, φ, pt, pr, pθ, pφ

)
We can obtain the first four ODEs using the definition of the 4-velocity components.

dt

dλ
= pt (4.17)

dr

dλ
= pr (4.18)

dθ

dλ
= pθ (4.19)

dφ

dλ
= pφ (4.20)

Now, by rearranging the geodesic equation, we get 4 more ODEs, as follows.

dpα

dλ
= −Γα

βγp
βpγ

.

• For α = t,
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dpt

dλ
= −Γt

βγp
βpγ = −

(
Γt
rtp

rpt Γt
trp

tpr
)
= −2Γt

rtp
rpt

= − 2Mptpr

rr − 2M
(4.21)

• For α = r,

dpr

dλ
= −Γr

βγp
βpγ = −

(
Γr
tt

(
pt
)2

Γr
rr

(
pr
)2 Γr

θθ

(
pθ
)2

Γr
φφ

(
pφ
)2)

= −
(
Mr − 2M

r3

(
pt
)2
− M

rr − 2M

(
pr
)2 − r − 2M

(
pθ
)2
−r − 2M sin2 θ

(
pφ
)2)

(4.22)

• For α = θ,

dpθ

dλ
= −Γθ

βγp
βpγ = −

(
Γθ
rθp

rpθ Γθ
θrp

θpr Γθ
φφ

(
pφ
)2)

= −
(
2Γθ

rθp
rpθ Γθ

φφ

(
pφ
)2)

= −
(
2prpθ

r
− sin θ cos θ

(
pφ
)2)

(4.23)

• For α = φ,

dpφ

dλ
= −Γφ

βγp
βpγ = −

(
Γφ
rφp

rpφ Γφ
φrp

φpr Γφ
θφp

θpφ Γφ
φθp

φpθ
)

= −
(
2Γφ

rφp
rpφ 2Γφ

θφp
θpφ

)
= −2

(
prpφ

r
− cot θpθpφ

)
(4.24)

This system of 8 first-order ODEs, (4.17) through (4.24), have been implemented python and
are solved using the standard SciPy libraries which uses the Runge-Kutta (RK45) algorithm.

4.2 Simulation Setup and Conserved Quantities
Time translation and rotation about the z-axis gives rise to two symmetries which correspond
to the conserved quantities, specific energy, E, and the specific angular momentum, Lz .

The specific energy E and specific angular momentum Lz are defined from the pα and
gαβ using,

E = −gttpt =
(
1− 2M

r

)
dt

dλ
(4.25)

Lz = gφφp
φ = r2 sin2 θdφ

dλ
(4.26)
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To solve the initial value problem, we need to provide the initial position vector (t0 = 0,
r0, θ0, φ0), along with ϵ, which defines the type of particle (ϵ = −1 for massive particles with
timelike geodesics and ϵ = 0 for massless particles, with null geodesics).

gµνp
µpν = ϵ (4.27)

To constrain the particle to the equitorial plane (for simplicity), we set

θ0 =
π

2
(4.28)

pθ0 = 0 (4.29)

Since E and Lz are conserved throughout the entire trajectory, we can use them to
determine the initial values for pt0 and pφ0 .

pt0 =
E

1− 2M
r0

(4.30)

pφ0 =
Lz

r20
(4.31)

We can find the initial radial velocity, pr0, with our known values and θ0 = π2, pθ0 = 0

1

1− 2M
r0

(
pr0
)2 = ϵ

(
1− 2M

r0

)(
pt0
)2
− r20

(
pφ0

)2
(4.32)

(
pr0
)2 = (

1− 2M
r0

)ϵ E2

1− 2M
r0

− L2
z

r20

 (4.33)

(
pr0
)2 = E2 −

(
1− 2M

r0

)−ϵ L2
z

r20

 (4.34)

The sign of pr0 = ±
√(

pr0

)2
is chosen depending on whether the particle is initially

moving inwards ( - ) or outwards ( + ). If the term under the square root is negative, the
chosen (E,Lz, r0) combination is physically forbidden. The next section presents the results
of some simulations with some physical parameters.



5. Results
As described in the previous chapter, we use the input parameters E,Lz, ϵ and an initial
position of

r0 = 10, θ0 =
π

2
, φ0 = 0

Since we stay in the x-y plane (θ0 = π
2 ) we can project the x and y coordinates of the

particle to produce a 2D image of the trajectory path. Figure 5.1 and 5.2 show the simulation
results afterN = 500 iterations.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
−8

−6

−4

−2

0
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4

6

8
(a) Photon

E=1, MBH =1, ε=0

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

(b) Massive Particle

E =1, MBH =1, ε= − 1

Lz =0

Lz =3

Lz =4

Lz =4.5

Lz =5

Lz =5.5

Black Hole
(REH =2.0)

Photosphere
(Rph =3.0)

x-axis

y-
ax

is

Figure 5.1: Trajectory of a (a) photon and a (b) massive particle for different values of angular
momentum Lz and fixed energy E = 1. One can note that the photon escapes the orbit of the black
hole only at Lz = 5.5M while the massive particle is able to achieve that with a lower Lz .

In all these simulations, one can see that no particle that enters the photosphere can
escape, as predicted. Note that in some cases (Figure 5.1.b for E = 1, Lz = 4), the particle
seems to enter an orbit around the black hole. However, after some number of iterations,
the numerical errors of the integrator pile up causing the trajectory to diverge. This is a
numerical error and can be minimised by reducing the error tolerance at each step of the
RK45 integrator. The current simulation uses 10−10 relative tolerance, which is good enough
for normal use cases.

All the code is documented in this github repository. Furthermore, animation videos have
been generated using the tool Manim and can be seen in this folder.
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(a) Photon

Lz =5, MBH =1, ε=0

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

(b) Massive Particle

Lz =5, MBH =1, ε= − 1
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Figure 5.2: Trajectory of a (a) photon and a (b) massive particle for different values of energy E and
fixed angular momentum Lz = 5. We see that the photon escapes the orbit of the black hole only at
E ∼ 1.5M while the massive particle is able to achieve that with a lower E ∼ 1.1M .

Figure 5.3: With increased error tolerance, we can see that a stable orbit is achieved by the massive
particle at E = 1, Lz = 4.

Figure 5.4: Similarly, we can see that a stable orbit is achieved by the photon particle atE = 1, Lz ∼
5.2.
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Figure 5.5: Some snapshots of the Manim animations. The red circle represents the photosphere of
the black hole.



A. Appendix
Below are the Python codes for solver.py, which is responsible for numerically solving the
Geodesic Equation, and main.py, which extracts solution from solver.py and generates
the animation using Manim.

Listing A.1: solver.py

1 import numpy as np
2

3 class Schwarzschild:
4 def __init__(self , M):
5 self.M = M
6 self.r_EH = 2*self.M
7

8 def g_tt(self , r, theta):
9 return -(1 - 2*self.M/r)
10

11 def g_rr(self , r, theta):
12 return 1/(1 - 2*self.M/r)
13

14 def g_thth(self , r, theta):
15 return r**2
16

17 def g_phph(self , r, theta):
18 return r**2*np.sin(theta)**2
19

20 def geodesic_eq_t(self , y):
21 t, r, theta , phi , p0 , p1 , p2 , p3 = y
22

23 return -2*self.M*p1*p0/(r*(r-2* self.M))
24

25 def geodesic_eq_r(self , y):
26 t, r, theta , phi , p0 , p1 , p2 , p3 = y
27 sin = np.sin(theta)
28 M = self.M
29 ch0 = M*(r-2*M)/r**3
30 ch1 = -M/(r*(r-2*M))
31 ch2 = -(r-2*M)
32 ch3 = -(r-2*M)*sin**2
33 return -(ch0*p0**2 + ch1*p1**2 + ch2*p2**2 + ch3*p3**2)
34

17
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35 def geodesic_eq_theta(self , y):
36 t, r, theta , phi , p0 , p1 , p2 , p3 = y
37 sin = np.sin(theta)
38 cos = np.cos(theta)
39 M = self.M
40 return -(2*p1*p2/r - sin*cos*p3**2)
41

42 def geodesic_eq_phi(self , y):
43 t, r, theta , phi , p0 , p1 , p2 , p3 = y
44 sin = np.sin(theta)
45 cos = np.cos(theta)
46 return -2*(p1*p3/r - cos*p2*p3/sin)
47

48 def compute_4momentum(self , r0 , E, Lz, epsilon = 0):
49 p0 = E/(1 - 2*self.M/r0)
50 p3 = Lz/r0**2
51 try:
52 # negative solution spirals inward
53 p1 = -np.sqrt(E**2 - (1-2* self.M/r0)*(Lz**2/r0**2 - ←↩

epsilon))
54 except:
55 print('This set of inital conditions is forbidden.')
56 p1 = 0
57 return p0 , p1 , p3
58

59 def geodesic_eq(self , y):
60 """
61 Return 8 differential equations which solve for the geodesic←↩

.
62 """
63 t, r, theta , phi , p0 , p1 , p2 , p3 = y
64

65 # Initializing the derivatives of the coordinates and four -←↩
momentum of our particle

66 derivatives = np.zeros_like(y)
67

68 derivatives [0] = p0
69 derivatives [1] = p1
70 derivatives [2] = p2
71 derivatives [3] = p3
72 derivatives [4] = self.geodesic_eq_t(y)
73 derivatives [5] = self.geodesic_eq_r(y)
74 derivatives [6] = self.geodesic_eq_theta(y)
75 derivatives [7] = self.geodesic_eq_phi(y)
76

77 return derivatives
78

79 def RKF45(self , y, h, tol = 1e-7):
80 abs_error = np.inf
81

82 while abs_error > tol:
83 k1 = self.geodesic_eq(y)
84 k2 = self.geodesic_eq(y + 1/4*k1*h)
85 k3 = self.geodesic_eq(y + 3/32*k1*h + 9/32*k2*←↩
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h)
86 k4 = self.geodesic_eq(y + 1932/2197* k1*h - 7200/2197* k2*←↩

h + 7296/2197* k3*h)
87 k5 = self.geodesic_eq(y + 439/216* k1*h - 8*k2*←↩

h + 3680/513* k3*h - 845/4104* k4*h)
88 k6 = self.geodesic_eq(y - 8/27*k1*h + 2*k2*←↩

h - 3544/2565* k3*h + 1859/4104* k4*h - 11/40* k5*h)
89

90 new_y = y + 16/135* k1*h + 6656/12825* k3*h + 28561/56430*←↩
k4*h - 9/50*k5*h + 2/55*k6*h

91 error = -1/360*k1*h + 128/4275* k3*h + 2197/75240* k4*h - ←↩
1/50* k5*h - 2/55* k6*h

92 abs_error = np.sqrt(np.sum(error **2))
93 new_h = 0.9*h*(tol/abs_error)**(1/5)
94 h = new_h
95

96 return new_y , h
97

98 def solve(self , y0 , n, h0):
99 affine_parameter = np.zeros(n)
100

101 # Solution Array
102 y = np.zeros ((n, len(y0)))
103 y[0] = y0
104 h = h0 # Initial step size
105

106 # Performing numerical integration
107 for i in range(n - 1):
108 y_next , h = self.RKF45(y[i], h)
109

110 y[i + 1] = y_next
111 affine_parameter[i + 1] = affine_parameter[i] + h
112

113 return affine_parameter , y

Listing A.2: main.py

1 from manim import *
2 from math import *
3 from solver import Schwarzschild
4

5 def trajectory(r0 = 3, E=1, Lz=5, M=1, epsilon =0):
6 schwarz = Schwarzschild(M = M)
7

8 # Initial Conditions
9 t0 = 0
10 r0 = r0
11 theta0 = np.pi/2
12 phi0 = 0
13

14 p0 = 0 # time
15 p1 = 0 # r



20

16 p2 = 0 # theta
17 p3 = 0 # phi
18

19 n_rays = 1 # number of light rays
20 N = 100 # number of simulation points
21

22 lines = []
23 for epsilon in [0, -1]:
24 p0, p1, p3 = schwarz.compute_4momentum(r0, E, Lz, epsilon)
25 y0 = [t0 , r0 , theta0 , phi0 , p0 , p1 , p2 , p3]
26

27 # Solve the equations of motion for a specified number of ←↩
steps with a specified initial step size

28 tau , sol = schwarz.solve(y0 , N, 1e-5)
29

30 t, r, theta , phi = sol[:, 0], sol[:, 1], sol[:, 2], sol[:, ←↩
3]

31

32 x = r*np.cos(phi)*np.sin(theta)
33 y = r*np.sin(phi)*np.sin(theta)
34 lines.append(np.array ([x, y, np.zeros(N)]).T)
35

36 return lines , schwarz.r_EH
37

38 def circle(r):
39 theta = np.linspace (-2*np.pi, 2*np.pi, 500)
40 return np.array([r*np.cos(theta), r*np.sin(theta), np.zeros (500)←↩

]).T
41

42 class BlackHole(Scene):
43 def construct(self):
44 self.camera.background_color = ManimColor('#191919 ')
45 axes = Axes(
46 x_range =(-10, 10),
47 y_range =(-10, 10),
48 x_length =12, y_length =12
49 )
50

51 # Initial Conditions
52 r0 = 10
53 E = 1.01
54 Lz = 4.5
55 M = 1
56 epsilon = 0
57 all_photons , r_EH = trajectory(r0 , E, Lz , M, epsilon)
58

59 # Add Text
60 self.add(Tex(r'$E =$' + f' {E},' +r' $M_{BH}=$'+f' {M},' +r'←↩

$L_z=$' + f' {Lz:.2f}', font_size =30).to_edge(DR).set_color(←↩
WHITE))

61 self.add(MarkupText('Trajectory of a', font_size =30).to_edge←↩
(UL).set_color(WHITE))

62 self.add(MarkupText(f'<span fgcolor ="{ YELLOW}">Photon </span >←↩
and a', font_size =30).next_to(self.mobjects [-1],DOWN))
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63 self.add(MarkupText(f'<span fgcolor ="{ BLUE}">Massive ←↩
Particle </span >', font_size =30).next_to(self.mobjects [-1],DOWN))

64

65 # Draw Trajectories
66 curves = VGroup ()
67 colors = [YELLOW , BLUE]
68 for i, points in enumerate(all_photons):
69 curve = VMobject ().set_points_as_corners(axes.c2p(points←↩

))
70 curve.set_stroke(colors[i], 3)
71 curves.add(curve)
72

73 # Draw the Black Hole
74 black_hole_core = VMobject ().set_points_as_corners(axes.c2p(←↩

circle(r_EH)))
75 black_hole_core.set_stroke(
76 opacity =0
77 )
78 black_hole_core.set_fill(BLACK , opacity =1.0)
79 self.add(black_hole_core)
80 black_hole_core.z_index = 1
81

82 # Draw the Photosphere
83 photosphere = VMobject ().set_points_as_corners(axes.c2p(←↩

circle (3*M)))
84 photosphere.set_stroke(
85 color=RED ,
86 width=2,
87 opacity =0.6
88 )
89 dashed_photosphere = DashedVMobject(photosphere)
90 self.add(dashed_photosphere)
91

92 # Animate the light ray being traced
93 self.play(
94 *(
95 Create(curve , rate_func=linear)
96 for curve in curves
97 ),
98 run_time=2,
99 )
100 self.wait (1)
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