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1 Special Relativity

1.1 Need for Relativity: Failure of Newtonian Mechanics at
Extreme Conditions

Classical Newtonian mechanics, while highly successful in describing everyday phenom-
ena, fails under extreme conditions:

• High Velocities (Approaching the Speed of Light)

– Newton’s laws assume absolute time and space, independent of the observer’s
motion.

– At speeds approaching the speed of light (c ≈ 3× 108m/s), Galilean relativity
breaks down.

– Maxwell’s equations predict electromagnetic waves travel at speed c, conflict-
ing with Newtonian mechanics.

– The Michelson-Morley experiment (1887) showed no detectable ”aether wind,”
contradicting the Newtonian notion of a preferred reference frame.

• Strong Gravitational Fields

– Newtonian gravity assumes instantaneous force propagation, incompatible with
relativity.

– General Relativity later resolved this by describing gravity as spacetime cur-
vature.

1.2 Postulates of Special Relativity

Einstein resolved these issues with two postulates:

1. Principle of Relativity: The laws of physics are the same in all inertial reference
frames.

2. Invariance of the Speed of Light: The speed of light in vacuum (c) is constant
and independent of the motion of the source or observer.

1.3 Lorentz Transformations

The Lorentz transformations relate space and time coordinates between two inertial
frames moving at relative velocity v along the x-axis:

t′ = γ
(
t− vx

c2

)
,

x′ = γ(x− vt),

y′ = y,

z′ = z,

where γ = 1√
1− v2

c2

is the Lorentz factor.

These transformations preserve the spacetime interval ds2 = −c2dt2+ dx2+ dy2+ dz2
and ensure c remains constant in all frames.
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1.4 Minkowski Space and Spacetime Diagrams

Special relativity unifies space and time into a single four-dimensional structure called
spacetime. This was formalized by Hermann Minkowski, who showed that time should
be treated as a fourth coordinate.

In Minkowski space:

• Events are represented as points with coordinates (ct, x, y, z).

• The spacetime interval between two events is given by:

s2 = c2t2 − x2 − y2 − z2

• This interval is invariant under Lorentz transformations — all observers agree on
its value.

Based on the sign of s2, the interval is classified as:

• Timelike (s2 > 0): Events can influence each other causally.

• Lightlike or null (s2 = 0): Events connected by light signals.

• Spacelike (s2 < 0): No causal connection; information cannot travel fast enough.

Spacetime diagrams are 2D plots (typically ct vs. x) that visually represent events,
worldlines of particles, and the structure of light cones:

• The line x = ct and x = −ct form the boundaries of the light cone.

• Worldlines inside the light cone represent possible paths of particles traveling slower
than light.

• Worldlines outside the cone would require faster-than-light motion, which is forbid-
den.

Minkowski space makes the geometry of special relativity intuitive and helps visualize
phenomena like simultaneity and time dilation.

1.5 Causality and the Relativity of Simultaneity

Causality is the principle that a cause must precede its effect. In special relativity,
preserving causality means that no information or influence can travel faster than the
speed of light.

Events that are timelike separated can be causally connected — one can influence
the other — because there is enough time for a light signal (or slower) to travel between
them. Events that are spacelike separated cannot be causally connected since doing so
would require faster-than-light transmission, violating special relativity.

Relativity of simultaneity is the idea that simultaneity is not absolute. Two events
that are simultaneous in one inertial frame may not be simultaneous in another. This
arises directly from the Lorentz transformations.

• Suppose two events occur at the same time t but different positions x1 and x2 in
one frame.
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• In another frame moving at velocity v, the time difference becomes:

∆t′ = γ

(
∆t− v∆x

c2

)

• If ∆t = 0, then ∆t′ = −γ v∆x
c2

̸= 0, meaning the events are no longer simultaneous.

This has deep implications:

• There is no universal “now” that all observers agree on.

• Time ordering of spacelike-separated events depends on the observer’s frame of
reference.

Despite this, causality is always preserved — if one event can influence another, all
observers will agree on which came first.

1.6 Time Dilation and Length Contraction

Special relativity predicts that time and length are not absolute — they depend on the
motion of the observer. Two key consequences are:

Time Dilation

A moving clock ticks more slowly compared to one at rest. If a time interval ∆t0 is
measured in the clock’s own rest frame (called proper time), then an observer moving at
speed v relative to the clock measures:

∆t = γ∆t0, where γ =
1√

1− v2

c2

This effect has been experimentally confirmed, such as by observing muons created
in the upper atmosphere surviving longer than expected due to their high speeds.

Length Contraction

Objects moving relative to an observer appear shorter along the direction of motion. If
L0 is the proper length (measured in the object’s rest frame), then the length measured
by an observer for whom the object is moving at speed v is:

L =
L0

γ

Only lengths along the direction of motion are affected; transverse dimensions remain
unchanged. This effect becomes significant at speeds close to the speed of light.

Both phenomena arise directly from the Lorentz transformations and are not illusions
— they reflect the geometry of spacetime itself.

5



1.7 Invariant Interval and Lorentz Group

In special relativity, the concept of distance is generalized to four-dimensional space-
time through the invariant interval. For two events with coordinates (t, x, y, z) and
(t′, x′, y′, z′), the spacetime interval s2 is defined as:

s2 = c2(t′ − t)2 − (x′ − x)2 − (y′ − y)2 − (z′ − z)2

This interval is invariant under Lorentz transformations, meaning all inertial observers
agree on its value. It replaces the idea of absolute time and space with a unified spacetime
structure.

• If s2 > 0, the interval is timelike — events can be causally connected.

• If s2 = 0, the interval is lightlike — events are connected by a light signal.

• If s2 < 0, the interval is spacelike — no causal influence is possible.

The Lorentz Group

The set of all transformations that preserve the invariant interval forms the Lorentz
group, denoted O(1, 3). These include:

• Boosts (transformations between frames moving at constant velocity)

• Rotations in 3D space

• Reflections and time reversal (in the full group)

The subgroup that preserves orientation and the direction of time is called the proper
orthochronous Lorentz group, denoted SO+(1, 3). Lorentz transformations can be
represented by matrices Λ satisfying:

Λµ
α Λ

ν
β ηµν = ηαβ

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric.
This formalism ensures that the laws of physics — especially Maxwell’s equations and

the spacetime structure — remain form-invariant under all inertial frames.

1.8 Proper Time

Proper time τ is the time measured by a clock that moves along with the particle —
i.e., in the particle’s rest frame. It is an invariant quantity and plays a fundamental role
in relativistic dynamics.

For an infinitesimal displacement in spacetime:

dτ =
1

c

√
ds2 =

√
dt2 − 1

c2
(dx2 + dy2 + dz2)

If the particle moves with velocity v, then:

dτ = dt

√
1− v2

c2
=
dt

γ

This makes proper time the natural parameter along a particle’s worldline, analogous
to arc length in geometry.
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1.9 4-Velocity

The 4-velocity Uµ is the rate of change of the spacetime position xµ with respect to
proper time τ :

Uµ =
dxµ

dτ
= γ(c, v⃗)

Here, v⃗ is the 3-velocity and γ = 1√
1−v2/c2

.

Properties:

• It transforms as a 4-vector under Lorentz transformations.

• Its Minkowski norm is invariant:

UµUµ = c2

1.10 4-Momentum

The 4-momentum P µ is defined as:

P µ = mUµ = (γmc, γmv⃗)

This generalizes the classical momentum and energy into a single 4-vector. Its com-
ponents are:

• P 0 = γmc → total energy divided by c: E = γmc2

• P⃗ = γmv⃗ → relativistic 3-momentum

The Minkowski norm of 4-momentum gives the rest mass:

P µPµ = E2/c2 − |P⃗ |2 = m2c2

This relation,
E2 = p2c2 +m2c4,

is the cornerstone of relativistic particle physics and holds for both massive and massless
particles.

1.11 Relativistic Form of Newton’s Laws

In special relativity, Newton’s second law is written using 4-vectors as:

dP µ

dτ
= F µ

where P µ = mUµ is the 4-momentum, τ is proper time, and F µ is the 4-force.
The spatial components of F µ relate to the classical 3-force f⃗ via:

F µ =
(
γf⃗ · v⃗/c, γf⃗

)
This ensures the spatial components match the Newtonian form in frame S:

dp⃗

dt
= f⃗
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and the temporal component becomes:

F 0 =
1

c

dE

dt

Using P µPµ = m2c2, we can derive:

d

dτ
(P µPµ) = 2P µdPµ

dτ
= 2γm

(
dE

dt
− u⃗ · f⃗

)
= 0

which gives the energy-work relation.

1.12 Relativistic Electromagnetic Force

In relativistic electrodynamics, the equation of motion for a particle of charge q is:

dP µ

dτ
=
q

c
Gµ

νU
ν

where Gµν is the electromagnetic field strength tensor:

Gµν =


0 Ex Ey Ez

Ex 0 cBz −cBy

Ey −cBz 0 cBx

Ez cBy −cBx 0


The spatial part of this equation recovers the Lorentz force law:

dp⃗

dt
= q(E⃗ + v⃗ × B⃗)

and the temporal part gives the power delivered:

dE

dt
= qE⃗ · v⃗

1.13 Acceleration and the Rindler Horizon

In special relativity, describing accelerated motion is subtler than in Newtonian mechan-
ics, since uniform acceleration in one frame does not generally translate the same way in
another. The most natural concept is proper acceleration — the acceleration measured by
an accelerometer moving with the object. It is invariant under Lorentz transformations
and physically meaningful to the accelerated observer.

Hyperbolic Trajectories and Proper Acceleration

A particle experiencing constant proper acceleration a in flat spacetime traces a hyper-
bolic worldline in Minkowski space. Assuming motion in the x-direction, the trajectory
as a function of proper time τ is:

x(τ) =
c2

a
cosh

(aτ
c

)
, t(τ) =

c2

a
sinh

(aτ
c

)
This satisfies the invariant:

x2 − c2t2 =

(
c2

a

)2

indicating motion along a hyperbola. The proper acceleration remains constant in the
co-moving instantaneous rest frame, even though coordinate acceleration decreases over
time.
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Rindler Coordinates and Observers

To describe the reference frame of an observer undergoing constant acceleration, we in-
troduce Rindler coordinates (η, ξ), related to Minkowski coordinates (t, x) via:

x = ξ cosh
(aη
c

)
, t = ξ sinh

(aη
c

)
Here, ξ is a spatial coordinate labeling the observer’s position in the accelerated frame,
and η plays the role of time for Rindler observers. The Minkowski metric transforms into:

ds2 = −a2ξ2dη2 + dξ2 + dy2 + dz2

This metric shows that Rindler observers are in a non-inertial frame and experience a
horizon at ξ = 0, where proper acceleration diverges.

Rindler Horizon and Causality

The Rindler horizon is a boundary in spacetime beyond which events cannot influence
an accelerating observer. It arises naturally from the coordinate transformation: the
accelerated observer’s worldline asymptotically approaches the line x = ct, but never
crosses it.

This leads to a causal structure similar to a black hole horizon. From the perspective
of the accelerated observer, signals from beyond x = ct (for right-moving observers) are
forever unreachable.

Figure 1: Spacetime diagram showing hyperbolic worldlines and the Rindler horizon.

Figure 2: Spacetime diagram showing hyperbolic worldlines and the Rindler horizon.

The Rindler horizon is not a physical barrier, but a limit on information accessibility
due to the observer’s accelerated frame. This concept is foundational in discussions of
relativistic thermodynamics and the Unruh effect.
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1.14 Raising and Lowering Indices

In special relativity, we often work with 4-vectors Xµ = (ct, x, y, z) and other tensors.
Unlike in Euclidean space, the **Minkowski metric** ηµν = diag(+1,−1,−1,−1) intro-
duces a crucial distinction between **upper indices (contravariant)** and **lower indices
(covariant)**.

Why the Index Position Matters

A 4-vector written with an upper index, Xµ, transforms differently than one with a lower
index, Xµ. They are related by the Minkowski metric:

Xµ = ηµνX
ν

Explicitly, this means:

Xµ = (ct, x, y, z) ⇒ Xµ = (ct,−x,−y,−z)

Using this, the Minkowski inner product between two 4-vectors Xµ and Xν can be
compactly written using Einstein summation:

XµXµ = ηµνX
µXν = c2t2 − x2 − y2 − z2

This expression is Lorentz invariant and reflects the correct spacetime geometry.
Important: It is incorrect and misleading to write XµXµ = c2t2 + x2 + y2 + z2 in

the relativistic context. Such expressions are not invariant and break the formalism of
special relativity.

The Role of the Minkowski Metric

The Minkowski metric ηµν serves to raise and lower indices:

Xµ = ηµνXν , Xµ = ηµνX
ν

Since ηµν = ηµν , raising and lowering operations use the same matrix.
Importantly, contractions (i.e., sums over repeated indices) must always involve one

upper and one lower index:

AµBµ = valid and Lorentz invariant, AµBµ = invalid

Example: The Electromagnetic Tensor

Consider the antisymmetric electromagnetic field strength tensor Gµν , defined in matrix
form:

Gµν =


0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0


This object naturally lives with indices down. If needed, one can raise an index using the
metric:

Gµ
ν = ηµρGρν

The antisymmetry Gµν = −Gνµ is preserved under index raising.
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Conceptual Significance

This distinction between upper and lower indices is more than notational:

• Xµ is a contravariant vector — it transforms like a coordinate displacement.

• Xµ is a covariant vector — it transforms like a gradient or 1-form.

In deeper mathematics (e.g., general relativity), these live in different vector spaces:
the tangent space and its dual. The Minkowski metric provides a natural isomorphism
between them.

By strictly following the index conventions and summing only over mixed pairs, we
ensure that all expressions remain Lorentz invariant — a core requirement of special
relativity.

2 General Relativity

General Relativity (GR), proposed by Albert Einstein in 1915, is a revolutionary theory
that redefines gravity not as a force, but as a manifestation of the curvature of spacetime
itself. It generalizes the principles of Special Relativity to include accelerated motion and
incorporates gravity as a geometric property of spacetime.

2.1 Why Newton’s Law of Gravity Fails

Newton’s universal law of gravitation,

F =
GMm

r2
,

treats gravity as an instantaneous force acting at a distance. While successful in many
practical contexts, Newton’s theory breaks down both conceptually and experimentally
under extreme conditions or high precision.

Conceptual Failures

• Incompatibility with Special Relativity: Newtonian gravity assumes instanta-
neous interaction, violating the principle that no information can travel faster than
light.

• Absolute Space and Time: Newton’s theory requires a fixed background of
absolute space and time. Special relativity replaced this with a unified, observer-
dependent spacetime, making Newton’s formulation outdated.

• No Role for Energy and Pressure: In Newtonian gravity, only mass generates
the gravitational field. But according to relativity, energy, momentum, and pressure
(components of the stress-energy tensor) also gravitate.
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Empirical Failures

• Perihelion Precession of Mercury: The orbit of Mercury deviates from New-
tonian predictions. General relativity explains the extra precession precisely.

• Deflection of Light by Gravity: Newtonian gravity cannot account for the
bending of light by massive objects, as light has no mass. GR predicts this as a
result of spacetime curvature and was confirmed during the 1919 solar eclipse.

• Gravitational Time Dilation and Redshift: Effects involving time in gravita-
tional fields (e.g. clocks ticking slower near Earth) are beyond Newtonian gravity
and have been verified experimentally.

Towards a Field Theory of Gravity

In the relativistic view, gravity is not a force but a feature of spacetime geometry. Massive
bodies curve spacetime, and objects follow geodesics — the straightest paths — within
that curved geometry. This insight naturally leads us to describe gravity using a field :
the metric tensor gµν , which varies across spacetime.

The gravitational field is not mediated by forces in space but encoded in the structure
of spacetime itself:

ds2 = gµν(x)dx
µdxν

The change in geometry caused by matter is governed by the Einstein field equations,
which relate curvature to the distribution of energy and momentum:

Gµν =
8πG

c4
Tµν

This framework unifies gravitation and geometry, laying the foundation for understanding
black holes, gravitational waves, and the large-scale structure of the universe.

2.2 Electromagnetism vs Gravity and the Role of the Energy-
Momentum Tensor

In classical field theory, both gravity and electromagnetism are long-range interactions,
but their treatments and physical interpretations are fundamentally different — especially
in the context of relativity.

Invariance of Charge vs Invariance of Mass

Electric charge is an intrinsic property of particles and is strictly invariant under Lorentz
transformations. No matter how fast an observer moves, the measured electric charge of
a particle remains the same. This is unlike energy or momentum, which vary with the
frame.

Mass, or more precisely rest mass, is also invariant. But gravity — unlike electromag-
netism — couples not just to mass, but to the **entire energy-momentum content** of
matter. This includes:

• Energy (including mass-energy)

• Momentum
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• Pressure

• Stress (momentum flow or momentum flux)

This is a core reason why gravity behaves differently from other forces in relativistic field
theory.

Electromagnetism: A Gauge Field on Flat Spacetime

The electromagnetic field Aµ lives in flat Minkowski spacetime, and the dynamics of the
field are governed by Maxwell’s equations. The field equations are:

∂νF
µν = µ0J

µ

where:

• F µν is the electromagnetic field tensor,

• Jµ = (ρc, j) is the 4-current (charge and current),

• ∂ν are partial derivatives in flat spacetime.

Electric charge appears as a source term, and is invariant. The spacetime remains fixed
— electromagnetic fields evolve on spacetime, not with it.

Gravity: Geometry as Dynamics

In contrast, general relativity makes spacetime itself dynamical. The “field” is the metric
gµν , and it evolves according to Einstein’s equations:

Gµν =
8πG

c4
Tµν

The object Gµν , called the Einstein tensor, encodes how spacetime is curved. It is
defined by:

Gµν = Rµν −
1

2
Rgµν

where:

• Rµν is the Ricci tensor, derived from spacetime curvature.

• R is the Ricci scalar, a trace of Rµν .

• gµν is the metric tensor.

The Einstein tensor is symmetric and satisfies ∇µGµν = 0, ensuring local conservation of
energy and momentum.
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The Stress-Energy Tensor Tµν

The stress-energy tensor is a symmetric rank-2 tensor:

Tµν =


ρc2 −cjx −cjy −cjz
−cjx σxx σxy σxz
−cjy σyx σyy σyz
−cjz σzx σzy σzz


Where:

• ρ: energy density

• ji: momentum density or energy flux

• σij: stress components or momentum flux, representing the rate at which the i-th
component of momentum flows across a surface normal to the j-th direction.

This tensor is the source term in the Einstein field equations — it tells spacetime how
to curve.

Key Differences Between Electromagnetism and Gravity

• Electromagnetism acts in a fixed spacetime; gravity changes the structure of space-
time itself.

• The electromagnetic field couples to charge (a scalar invariant); gravity couples to
Tµν , a tensor involving all forms of energy and momentum.

• Electromagnetic waves propagate over spacetime; gravitational waves are ripples in
spacetime.

2.3 Geodesics in Spacetime

In general relativity, particles not subject to any non-gravitational forces move along
geodesics — the straightest possible paths in curved spacetime. Just as in classical
mechanics, this path can be obtained by applying the principle of least action.

Principle of Least Action

The path that a free particle follows between two spacetime events is the one that ex-
tremizes the action:

S =

∫
L dλ

where λ is an arbitrary parameter along the path, and L is the Lagrangian.
For a free particle in curved spacetime, the natural choice of action is proportional to

the proper time:

S = −m
∫
ds = −m

∫ √
gµν

dxµ

dλ

dxν

dλ
dλ

We can simplify this by choosing the Lagrangian:

L =
1

2
gµν

dxµ

dλ

dxν

dλ

which gives the same equations of motion due to reparametrization invariance (since the
square root form and this form extremize the same path).
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Geodesic Equation

Using the Euler–Lagrange equations:

d

dλ

(
∂L
∂ẋα

)
− ∂L
∂xα

= 0

with ẋµ = dxµ

dλ
, we compute:

∂L
∂ẋα

= gαν ẋ
ν ,

∂L
∂xα

=
1

2
∂αgµν ẋ

µẋν

Plugging into the Euler–Lagrange equation gives:

d

dλ
(gαν ẋ

ν)− 1

2
∂αgµν ẋ

µẋν = 0

After manipulating and using the definition of the Christoffel symbols:

Γµ
νρ =

1

2
gµσ (∂νgσρ + ∂ρgσν − ∂σgνρ)

we obtain the geodesic equation:

d2xµ

dλ2
+ Γµ

νρ

dxν

dλ

dxρ

dλ
= 0

This equation describes the path of a free-falling particle through curved spacetime.

Non-Relativistic Limit

In the non-relativistic (Newtonian) limit:

• Velocities are small: |v⃗| ≪ c

• The gravitational field is weak: spacetime is nearly flat.

• The dominant metric perturbation is g00 ≈ 1 + 2ϕ/c2, where ϕ is the Newtonian
gravitational potential.

In this limit, the geodesic equation reduces to Newton’s second law:

d2xi

dt2
= −∂iϕ

This shows that Newtonian gravity emerges as the low-speed, weak-field approxima-
tion of general relativity.

A Particle in Minkowski Spacetime

Consider a particle moving in Minkowski spacetime R1,3, with Cartesian coordinates
xµ = (ct, x, y, z), and metric:

ηµν = diag(−1,+1,+1,+1)

The invariant spacetime interval between two infinitesimally separated points is:

ds2 = ηµνdx
µdxν

Depending on the sign of ds2, events are:

15



• Timelike if ds2 < 0

• Spacelike if ds2 > 0

• Lightlike (null) if ds2 = 0

To describe the trajectory of a particle, we use a parameter σ, which increases mono-
tonically along the worldline, with endpoints σ1 and σ2. The action for a free massive
particle (with rest mass m) is:

S = −mc
∫ σ2

σ1

dσ

√
−ηµν

dxµ

dσ

dxν

dσ

This action has dimensions of energy × time, as required, and geometrically represents
the proper time along the timelike worldline.

Symmetries of the Action

• Lorentz Invariance: The action is invariant under Lorentz transformations,

xµ → Λµ
ρx

ρ with Λµ
σηµνΛ

ν
ρ = ησρ

Solutions to the equations of motion are mapped to new solutions by Lorentz trans-
formations.

• Reparameterisation Invariance: The parameter σ is arbitrary. If we change
variables to a new monotonic parameter σ̃(σ), the form of the action remains un-
changed:

S = −mc
∫ σ̃2

σ̃1

dσ̃

√
−ηµν

dxµ

dσ̃

dxν

dσ̃

This is not a symmetry that generates new solutions, but a redundancy — similar
to gauge invariance — reflecting that physics does not depend on how we parame-
terise the worldline.

Degrees of Freedom and the Role of Parameterisation At first glance, the rel-
ativistic action appears to involve four dynamical degrees of freedom xµ(σ), in contrast
to the three spatial degrees of freedom xi(t) in the non-relativistic case. This raises the
question: are we introducing more physical degrees of freedom by adopting a relativistic
description?

The answer lies in reparameterisation invariance. Because the parameter σ is
arbitrary and carries no physical meaning, not all four functions xµ(σ) are independent.
The actual trajectory is defined by the relation between the coordinates xµ, not by their
individual parameterisations. Thus, one degree of freedom is redundant, and we are left
with three physical degrees of freedom — just as in the non-relativistic case.

As a concrete example, we can choose a specific parameterisation σ = t, where t is
the time measured by some inertial observer. The action becomes:

S = −mc
∫ t2

t1

dt

√
1− ẋ2

c2
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where ẋ = dx
dt
. This is the action for a relativistic particle in a particular frame, which

makes explicit the appearance of the Lorentz factor:

γ =
1√

1− ẋ2

c2

While this form reveals clearly that the particle has three physical degrees of freedom
x(t), it obscures the Lorentz invariance of the original covariant action. That symmetry
becomes manifest only when all spacetime coordinates are treated on equal footing.

Rediscovering the Forces of Nature

So far, we’ve only considered the action for a free relativistic particle. To include forces,
we must add terms to the action — but in a way that preserves reparameterisation
invariance.

In non-relativistic mechanics, forces are introduced via a potential:

Snon-rel =

∫
dt

(
1

2
mẋ2 − V (x)

)
However, in the relativistic case, naively adding a potential term

∫
dσ V (x) breaks repa-

rameterisation invariance. To maintain this symmetry, we must construct interaction
terms that cancel any Jacobian from reparametrisation.

Introducing a Vector Field Aµ(x) To retain Lorentz invariance and reparameterisa-
tion invariance, we consider adding a term linear in the velocity:

S = −mc
∫ σ2

σ1

dσ

√
−ηµν

dxµ

dσ

dxν

dσ
− q

∫ σ2

σ1

dσ Aµ(x)
dxµ

dσ

Here:

• Aµ(x) is a spacetime-dependent vector field,

• q is a coupling constant, later interpreted as electric charge.

This form ensures both reparameterisation and Lorentz invariance.

Recovering the Electromagnetic Interaction Choosing σ = t and writing Aµ(x) =(
ϕ(x)
c
,A(x)

)
, the action becomes:

S =

∫
dt

(
−mc2

√
1− ẋ2

c2
− qϕ(x) + qA(x) · ẋ

)

This is precisely the action for a charged particle in an electromagnetic field. The
term involving ϕ(x) gives rise to the electric potential energy, while A(x) · ẋ introduces
magnetic effects.

Thus, by demanding the correct symmetries of relativistic mechanics, we naturally
rediscover the **Lorentz force law** of electromagnetism.
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The Equivalence Principle and Gravitational Action

Let us consider the non-relativistic limit of a relativistic particle moving under a potential
V (x) = mΦ(x), where Φ(x) is the Newtonian gravitational potential. The action takes
the approximate form:

S ≈
∫
dt

(
1

2
mẋ2 −mΦ(x)

)
We immediately notice a key feature: the mass m appears in both the kinetic and po-
tential terms. This implies that the strength of the gravitational force is proportional to
the inertial mass.

In Newtonian mechanics, the two masses need not be equal. One may distinguish
between:

• Inertial mass mI : coefficient in kinetic energy.

• Gravitational mass mG: coupling to the gravitational field.

But experiments show that:
mI = mG

to extraordinary precision (10−13). This empirical fact is known as the equivalence
principle.

A Geometric Interpretation Our relativistic action provides a natural explanation:
since the mass multiplies the entire action uniformly, no distinction arises between mI

and mG. Gravity does not act like a force in the traditional sense — instead, it modifies
the background geometry in which particles move.

To capture this in the action, we promote the flat metric component η00 ≈ −1 to a
weak-field expansion:

η00 → g00(x) ≈ −
(
1 +

2Φ(x)

c2

)
But modifying only η00 would break Lorentz symmetry. To preserve covariance, we
promote all components of ηµν to spacetime-dependent functions: a full metric gµν(x).
This leads us to the reparameterisation invariant gravitational action:

S = −mc
∫ σ2

σ1

dσ

√
−gµν(x)

dxµ

dσ

dxν

dσ

This describes a particle moving in curved spacetime — not under a force, but following
geodesics dictated by the geometry. Thus, the equivalence principle naturally guides us
to general relativity: gravity as curvature.

The Equivalence Principle

Equivalence Principle (Weak Form): Locally, the effects of a gravitational field are
indistinguishable from those of constant acceleration. That is, an observer in free fall
cannot detect the presence of gravity by any local experiment.

This implies that gravity and inertia are fundamentally linked — and that freely
falling frames are locally inertial. This forms the foundational idea of general relativity.

Example: A person in a windowless elevator cannot distinguish between:

• standing still in Earth’s gravity,

• or accelerating upward in deep space at a = g.
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Rapidity: In special relativity, rapidity θ replaces velocity as a more natural additive
parameter for boosts.

For motion along one spatial axis:

v = c tanh θ, γ = cosh θ, γv/c = sinh θ

Thus, a Lorentz boost becomes:(
ct′

x′

)
=

(
cosh θ − sinh θ
− sinh θ cosh θ

)(
ct
x

)
Rapidity is additive under successive boosts, unlike velocity. This makes it a more natural
parameter when composing Lorentz transformations.

Uniform Acceleration and the Equivalence Principle

In special relativity, it is often more convenient to parametrize motion using rapidity φ,
which is related to velocity via

v = c tanhφ

Rapidity has the nice property of being additive under successive Lorentz boosts:

φ = φ1 + φ2

Uniform Acceleration For an observer undergoing constant proper acceleration a,
the rapidity increases linearly with proper time τ :

φ(τ) =
aτ

c
⇒ v(τ) = c tanh

(aτ
c

)
This yields a relation between proper time τ and coordinate time t in the inertial

frame:
dt

dτ
= γ(τ) = cosh

(aτ
c

)
⇒ t(τ) =

c

a
sinh

(aτ
c

)
x(τ) =

c2

a
cosh

(aτ
c

)
− c2

a

This describes a hyperbolic trajectory in Minkowski spacetime:(
x+

c2

a

)2

− c2t2 =

(
c2

a

)2

Accelerated Coordinates and Rindler Spacetime: From the perspective of the
accelerating observer, it is natural to define coordinates (τ, ρ) such that the observer sits
at ρ = 0. The transformation from inertial coordinates (ct, x) is:

ct =

(
ρ+

c2

a

)
sinh

(aτ
c

)
, x =

(
ρ+

c2

a

)
cosh

(aτ
c

)
− c2

a

These coordinates cover only the right wedge of Minkowski space — the region acces-
sible to the accelerating observer. This limited access is associated with the concept of
an event horizon.
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Rindler Metric: Substituting into the flat Minkowski line element:

ds2 = −c2dt2 + dx2 + dy2 + dz2

yields:

ds2 = −
(
1 +

aρ

c2

)2
c2dτ 2 + dρ2 + dy2 + dz2

This is the Rindler metric, describing flat spacetime from the viewpoint of a uni-
formly accelerating observer. The spatial sections remain flat, but the time component
now depends on ρ.

Gravitational Interpretation: The metric in the coordinates (τ, ρ), known as Kot-
tler–Møller coordinates, is a rewriting of part of flat Minkowski spacetime from the
viewpoint of a uniformly accelerating observer. It reads:

ds2 = −
(
1 +

aρ

c2

)2
c2dτ 2 + dρ2 + dy2 + dz2

This is closely related to the Rindler metric, which we will study later in the context
of black hole horizons.

The spatial part of the metric remains flat, but the temporal component gains a
spatial dependence:

g00 = −
(
1 +

aρ

c2

)2
= −

(
1 +

2aρ

c2
+
a2ρ2

c4

)
This expansion matches the expected form from Newtonian gravity:

g00 ≈ −
(
1 +

2Φ(ρ)

c2

)
⇒ Φ(ρ) = aρ

Interpretation: The accelerating observer perceives a linearly increasing gravita-
tional potential Φ(ρ) = aρ, as if immersed in a constant gravitational field. This is a
direct realization of the equivalence principle: acceleration and gravity are locally
indistinguishable.

The observer’s experience in the accelerating frame (with metric above) is equivalent
to being in a gravitational field with uniform strength a, even though they are in flat
spacetime. This geometric reformulation of inertial effects lies at the heart of general
relativity.

Einstein Equivalence Principle and Tidal Forces: The Einstein Equivalence
Principle states that in any sufficiently small region of spacetime, there always exists a
freely falling (locally inertial) frame in which the effects of gravity vanish. Mathematically,
this means the metric takes the form

gµν ≈ ηµν and Γλ
µν = 0

at a single point. These coordinates are those of a freely falling observer, where locally,
spacetime appears flat.

However, this equivalence is only local. Over an extended region, the metric can no
longer be transformed into Minkowski form everywhere, and curvature effects emerge
through non-zero second derivatives of the metric.
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A clear manifestation of this is seen through tidal forces. Suppose you are in a
weightless elevator with two small test masses placed near each other. If you are in true
inertial motion (e.g., drifting in flat space), the balls remain stationary relative to each
other. But in a non-uniform gravitational field (e.g., falling toward Earth), their geodesics
begin to diverge or converge.

This deviation signals spacetime curvature and is captured by the geodesic devia-
tion equation. Thus, while gravity can be eliminated locally by choosing an appropriate
frame, curvature—and hence gravity—can still be detected over finite regions.

Gravitational Time Dilation:

Even before solving Einstein’s equations, we can already understand how gravity affects
time. In a weak gravitational field Φ(x), the temporal component of the metric becomes:

g00(x) = 1 +
2Φ(x)

c2

For a spherically symmetric mass M , the Newtonian potential is:

Φ(r) = −GM
r

Substituting into the metric gives:

dτ 2 = g00(r) dt
2 =

(
1− 2GM

rc2

)
dt2

An observer at radius r thus experiences a slower passage of time compared to someone
far from the mass. If a distant observer measures time t, the local time experienced near
the mass is:

T (r) = t

√
1− 2GM

rc2

This phenomenon is known as gravitational time dilation.

The gravitational time dilation effect becomes dramatically more pronounced near a black
hole. In Section 1.3, we will see that the closest stable circular orbit a planet can maintain
around a non-rotating (Schwarzschild) black hole is at

r =
3GM

c2

At this radius, time passes significantly slower. A clock orbiting at this distance ticks at
the rate:

T = t

√
1

3
≈ 0.58t

compared to an asymptotic observer at infinity.

Why is this the innermost stable circular orbit (ISCO)? The answer lies in the nature
of geodesics in curved spacetime. As one moves closer to the black hole, the effective po-
tential for orbital motion becomes increasingly steep and unstable. Below r = 3GM/c2,
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circular orbits are no longer stable — small perturbations in radius grow, causing the par-
ticle to spiral inward toward the event horizon. The ISCO marks the boundary between
stable and unstable orbital motion.

In Interstellar, the planet is depicted as experiencing time so slow that one hour there
corresponds to seven years on a distant spaceship. For this extreme time dilation to
occur, the planet would need to be located much closer to the event horizon, near

r ≈ 2GM

c2

However, this is already inside the ISCO, meaning no stable orbit is possible there for a
Schwarzschild black hole. To achieve both stability and such extreme time dilation, one
must consider a rapidly spinning (Kerr) black hole. In Kerr spacetime, frame dragging
allows stable orbits to exist closer to the horizon, but even then, such orbits would be
subject to intense tidal forces, radiation, and other hostile effects — making the setting
in the movie highly idealized.

Thus, while the concept of gravitational time dilation in Interstellar is based on real
physics, the magnitude and survivability of such a planet are scientifically implausible
without invoking a very carefully tuned rotating black hole model.

Gravitational time dilation has also been experimentally confirmed using atomic clocks
at different altitudes on Earth, in agreement with general relativity.

Gravitational Redshift:

Gravitational redshift is one of the key observable consequences of general relativity,
arising due to the variation of the flow of time in a gravitational field. When light or any
signal climbs out of a gravitational potential well, it loses energy, which manifests as a
shift toward longer wavelengths (lower frequencies).

Consider a static observer at radius r in a weak gravitational field, where the spacetime
metric is approximately:

g00(r) ≈ 1 +
2Φ(r)

c2

Here, Φ(r) is the Newtonian potential, e.g., for a spherical mass M ,

Φ(r) = −GM
r

Suppose a photon is emitted from radius r1 and received at a distant point r2. The
time dilation experienced by the emitting and receiving observers leads to a shift in the
observed frequency:

ν2
ν1

=

√
g00(r2)

g00(r1)

In the weak-field limit (Φ/c2 ≪ 1), this becomes:

ν2
ν1

≈ 1 +
Φ(r2)− Φ(r1)

c2

⇒ ∆ν

ν
=
ν2 − ν1
ν1

≈ Φ(r2)− Φ(r1)

c2
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If r2 > r1, i.e., the photon climbs out of the potential well, then Φ(r2) > Φ(r1), so ν2 < ν1:
a redshift. Conversely, light falling into a potential well will be blueshifted.

Experimental Verification: Gravitational redshift has been confirmed experimentally
through observations such as:

• The Pound-Rebka experiment (1959), which measured redshift over a height of 22.5
meters using gamma rays.

• Observations of spectral lines from white dwarfs and neutron stars.

• GPS satellites, which must account for both gravitational and special relativistic
time dilations to maintain accuracy.

Gravitational redshift directly ties the geometry of spacetime to observational phenom-
ena, reinforcing the idea that gravity is not a force in the Newtonian sense, but a mani-
festation of curved spacetime.

Geodesics in Spacetime:

So far, we have focussed entirely on the actions describing particles, and have not yet
written down an equation of motion, let alone solved one. Now it’s time to address this.

We consider the relativistic action for a particle moving in curved spacetime:

S = −mc
∫ σ2

σ1

dσL, with L =
√
−gµν(x) ẋµ ẋν

where ẋµ = dxµ

dσ
is the derivative of the particle’s worldline with respect to an arbitrary

parameter σ. This form is similar to the non-relativistic geodesic action, but the square
root introduces complications when deriving the equations of motion.

Equations of Motion: We compute the Euler-Lagrange equations:

d

dσ

(
∂L
∂ẋρ

)
− ∂L
∂xρ

= 0

Working through the algebra, we obtain:

d

dσ

(
gρν ẋ

ν

L

)
− 1

2L
∂ρgµν ẋ

µẋν = 0

This yields a complicated form due to the square-root factor L. However, this can be
greatly simplified if we choose to reparameterise the worldline using the proper time τ ,
which is defined by:

cdτ = L(σ) dσ

This ensures that L = c, and thus dL
dτ

= 0. Such parameters related linearly to proper
time (τ̃ = aτ + b) are called affine parameters.
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The Geodesic Equation: Using an affine parameter, the Euler-Lagrange equations
simplify to the relativistic geodesic equation:

d2xµ

dτ 2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
= 0

where Γµ
νρ are the Christoffel symbols:

Γµ
νρ =

1

2
gµσ (∂νgσρ + ∂ρgσν − ∂σgνρ)

This is the most important equation describing how particles move under gravity in gen-
eral relativity: they follow geodesics, the ”straightest possible paths” in curved spacetime.

A Useful Trick: Rather than dealing with square roots, we can use a simplified form
of the action (when working purely classically):

Suseful =

∫
dτ gµν(x)

dxµ

dτ

dxν

dτ

This will produce the same geodesic equation (up to affine reparameterisation), provided
we impose the constraint:

gµν
dxµ

dτ

dxν

dτ
= −c2

which ensures the worldline is timelike.

Massless Particles: For massless particles, such as photons, the path followed is a
null geodesic, and the constraint becomes:

gµν
dxµ

dτ

dxν

dτ
= 0

The fact that the geodesic equation is independent of mass reflects the equivalence prin-
ciple: all objects, regardless of mass, fall the same way in a gravitational field.

This derivation shows how geodesic motion emerges naturally from the action principle
in general relativity, and how proper time plays a central role in simplifying the formalism.

A Useful Trick:

We started in Section 1.1.1 with the non-relativistic action

S =

∫
dt
mij

2
gij(x)ẋ

iẋj

and found that it gives rise to the geodesic equation (1.7).
However, to describe relativistic physics in spacetime, we need to incorporate repa-

rameterisation invariance into our formalism. This leads us to the action

S = −mc
∫
dσ

√
−gµν(x)

dxµ

dσ

dxν

dσ

Nonetheless, when we restrict to a particular parameterisation — the proper time τ — we
find exactly the same geodesic equation (1.30) that we encountered in the non-relativistic
case.
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This suggests a shortcut. If our goal is merely to derive the geodesic equation for a
given metric, we can work with the simplified action:

Suseful =

∫
dτ gµν(x)

dxµ

dτ

dxν

dτ
(1.32)

This will give the desired equations of motion, provided it is supplemented with the
constraint:

gµν
dxµ

dτ

dxν

dτ
= −c2 (1.33)

This constraint enforces that the geodesic is timelike, with τ representing proper time.
It ensures that the particle moves forward in time. Notably, neither the action (??) nor
the constraint (??) depend on the mass m of the particle. This is a reflection of the
equivalence principle, which tells us that all particles, regardless of mass, follow the same
geodesic.

Moreover, we can also use (??) to compute the motion of massless particles such as
light. These follow null geodesics, which means we replace the constraint with:

gµν
dxµ

dτ

dxν

dτ
= 0 (1.34)

While the action Suseful is, as the name suggests, useful, it must be wielded with caution.
As written, it does not have the correct physical dimensions for an action. Furthermore, if
one tries to use it in the context of quantum mechanics or statistical mechanics, improper
handling of the constraint could lead to incorrect results.

A First Look at the Schwarzschild Metric

Physics was born from our attempts to understand the motion of the planets. The
problem was largely solved by Newton, who was able to derive Kepler’s laws of planetary
motion from the gravitational force law. This was described in some detail in our first
lecture course on Dynamics and Relativity.

Newton’s laws are not the end of the story. There are relativistic corrections to the
orbits of the planets that can be understood by computing the geodesics in the background
of a star.

To do this, we first need to understand the metric created by a star. This will be
derived in Section 6. For now, we simply state the result: a star of mass M gives rise to
a curved spacetime described by the Schwarzschild metric:

ds2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) (1)

The coordinates θ and ϕ are the usual spherical polar coordinates, with θ ∈ [0, π] and
ϕ ∈ [0, 2π).

We can already perform a few sanity checks. First, note that far from the star, as
r → ∞, the metric reduces to the flat Minkowski metric, as it should. Secondly, the g00
component is

g00 = −
(
1 +

2Φ

c2

)
, with Φ(r) = −GM

r
(2)

which matches our earlier expectation for a weak gravitational potential.
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However, the Schwarzschild metric also has some curious features. In particular, the
grr component diverges at

r = Rs =
2GM

c2
(3)

This radius Rs is known as the Schwarzschild radius. It marks the location of an event
horizon if the star is sufficiently compact — in other words, if it’s a black hole. This
phenomenon will be studied more deeply in Section 6.

That said, the Schwarzschild metric describes spacetime outside any spherically sym-
metric mass distribution, whether it’s a black hole or a regular star. For a regular star,
the metric applies only outside the stellar surface r > Rstar, where Rstar ≫ Rs.

In what follows, we will treat planets as test particles moving along geodesics in the
Schwarzschild geometry and study the relativistic corrections to planetary orbits and
other physical effects in this spacetime.

Geodesics in the Schwarzschild Background

Our first task is to derive the equations for a geodesic in the Schwarzschild background.
To do this, we use the quick and easy method of looking at the action (1.32) for a particle
moving in Schwarzschild spacetime,

Suseful =

∫
dτ L =

∫
dτ gµν(x) ẋ

µẋν (4)

=

∫
dτ
[
−A(r)c2ṫ2 + A−1(r)ṙ2 + r2(θ̇2 + sin2 θ ϕ̇2)

]
(5)

where A(r) = 1− Rs

r
and ẋµ = dxµ/dτ .

Just like in the Newtonian Kepler problem, we can use conservation of angular mo-
mentum to restrict the motion to a plane. Consider the equation of motion for θ:

d

dτ

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 ⇒ d

dτ
(r2θ̇) = r2 sin θ cos θ ϕ̇2 (6)

This tells us that if we choose initial conditions with θ = π/2 and θ̇ = 0, then the motion
will remain confined to the equatorial plane. We adopt this simplification.

Conserved Quantities: Next, we exploit the symmetries of the Schwarzschild metric
to identify conserved quantities. Since the Lagrangian is independent of both t and ϕ,
we apply the Euler-Lagrange equation:

d

dτ

(
∂L

∂ẋ

)
= 0 ⇒ conserved quantity (7)

The conserved quantity associated with ϕ (angular momentum per unit mass) is:

2ℓ =
∂L

∂ϕ̇
= 2r2ϕ̇ ⇒ ℓ = r2ϕ̇ (8)

The conserved quantity associated with t (energy per unit mass) is:

−2E =
∂L

∂ṫ
= −2A(r)c2ṫ ⇒ E = A(r)c2ṫ (9)

As r → ∞, where A(r) → 1, we return to flat space. There, we know ṫ = γ, and
E → γc2, consistent with the energy per unit rest mass in special relativity.
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Geodesic Constraint: We now impose the proper time constraint from (1.33). Setting
θ = π/2 and θ̇ = 0, we get:

−A(r)c2ṫ2 + A−1(r)ṙ2 + r2ϕ̇2 = −c2 (10)

Substituting the conserved quantities for ṫ and ϕ̇, we find:

1

2
ṙ2 + Veff(r) =

1

2

E2

c2
(11)

with the effective potential

Veff(r) =
1

2

(
c2 +

ℓ2

r2

)(
1− Rs

r

)
(12)

This is the key equation governing the radial motion of the particle. Once the radial
solution is known, we can reconstruct the full orbit using the expression for angular
momentum.

2.4 Planetary Orbits in General Relativity

We now repeat this analysis for the full relativistic motion of a massive particle moving
along a geodesic in the Schwarzschild metric. We have seen that the effective potential
takes the form:

Veff(r) =
c2

2
− GM

r
+

l2

2r2
− GMl2

r3c2
(13)

The relativistic correction scales as −1/r3 and modifies the Newtonian story at short
distances, ensuring that the potential Veff(r) → −∞ as r → 0. Notably, the potential
vanishes at the Schwarzschild radius r = Rs = 2GM/c2, with Veff(Rs) = 0.

The shape of the potential depends on the angular momentum. To analyze this, we
compute the critical points:

V ′
eff(r) =

GM

r2
− l2

r3
+

3GMl2

r4c2
= 0 (14)

This equation can be rearranged as:

GMr2 − l2r +
3GMl2

c2
= 0 (15)

This quadratic equation in r has two solutions when the discriminant is positive, i.e.,
when

l2 >
12G2M2

c2
(16)

In this case, the effective potential has a local maximum and a local minimum. Let
us denote the solutions to the quadratic as r+ and r− with r+ > r−. The outer root
r+ corresponds to a stable circular orbit; the inner root r− corresponds to an unstable
circular orbit.

There also exist non-circular orbits that oscillate around the minimum of the potential.
Unlike Newtonian orbits, these are not necessarily closed or elliptical. A notable feature
is that the angular momentum barrier is now finite: even a particle with large angular
momentum can fall into the center if it has sufficient energy.
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If l2 < 12G2M2

c2
, then Veff(r) has no turning points and the potential is monotonically

decreasing. No stable orbits exist in this case; all particles eventually fall inward.
The borderline case l2 = 12G2M2

c2
corresponds to a saddle point in the potential, located

at:

rISCO =
6GM

c2
(17)

This is known as the Innermost Stable Circular Orbit (ISCO). For r < rISCO, no circular
orbits exist, though non-circular trajectories may still dip into this region.

The ISCO plays a significant role in black hole astrophysics, especially as it marks
the inner edge of an accretion disk. In observations like the Event Horizon Telescope
image, the ring of light roughly corresponds to the photon sphere rather than the ISCO.
Nonetheless, the ISCO still defines the last possible stable orbit for matter.

Finally, we can ask: how close can a non-circular orbit approach the black hole? In
the limit l → ∞, the maximum of the effective potential approaches:

r− → 3GM

c2
(18)

This is the closest distance that any timelike geodesic can reach and still escape, making
it an important threshold in relativistic dynamics.

2.5 Perihelion Precession

To analyze the relativistic correction to planetary orbits, we introduce the inverse radial
coordinate

u =
1

r

and express the equations of motion in terms of u(ϕ). Starting from the conserved energy
and angular momentum, and applying general relativistic corrections, the equation of
motion becomes (

du

dϕ

)2

+ u2 − 2GM

l2
u− 2GM

c2
u3 =

E2

l2c2
− 1

l2

This is considerably more complex than the Newtonian orbital equation. To simplify,
we differentiate both sides with respect to ϕ, assuming du

dϕ
̸= 0 (i.e., excluding circular
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orbits), yielding:
d2u

dϕ2
+ u =

GM

l2
+

3GM

c2
u2

This equation differs from the Newtonian result by the additional nonlinear term
3GM
c2
u2, which vanishes as c→ ∞.
To solve this, we employ perturbation theory by introducing the small parameter

β =
3G2M2

l2c2

and seek a solution as a power series expansion in β:

u(ϕ) = u0(ϕ) + βu1(ϕ) + β2u2(ϕ) + · · ·

At leading order (β → 0), we retrieve the Newtonian orbit:

d2u0
dϕ2

+ u0 =
GM

l2
⇒ u0(ϕ) =

GM

l2
(1 + e cosϕ)

Substituting u0 into the right-hand side of the full equation, we obtain the inhomo-
geneous differential equation for u1:

d2u1
dϕ2

+ u1 =
GM

l2
(1 + e cosϕ)2

Expanding the right-hand side:

(1 + e cosϕ)2 = 1 + 2e cosϕ+ e2 cos2 ϕ = 1 + 2e cosϕ+
e2

2
+
e2

2
cos(2ϕ)

So the equation becomes:

d2u1
dϕ2

+ u1 =
GM

l2

(
1 +

e2

2
+ 2e cosϕ+

e2

2
cos(2ϕ)

)
This has the solution:

u1(ϕ) =
GM

l2

(
1 +

e2

2
+ eϕ sinϕ− e2

6
cos(2ϕ)

)
The key term here is eϕ sinϕ, which is **not periodic** in ϕ and causes the orbit to not

close after a full 2π revolution. This manifests as a slow **precession of the perihelion**
(or aphelion) of the orbit.

The perihelion shift ∆ϕ per revolution, to leading order in β, is given by:

∆ϕ ≈ 2πβ =
6πG2M2

l2c2

This is a classical test of general relativity, famously explaining the anomalous pre-
cession of Mercury’s orbit.
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Application to Mercury and Observable Shift

For planets orbiting the Sun, the perihelion shift depends only on the planet’s angular
momentum l and the mass of the Sun, denoted M⊙. The latter is approximately

M⊙ ≈ 2× 1030 kg ⇒ GM⊙

c2
≈ 1.5× 103 m

For a planet in an almost circular orbit of radius r and orbital period T , the angular
momentum is

l =
2πr2

T

Using Kepler’s third law (T ∝ r3/2), it follows that l ∝ r1/2, and hence

δ ∝ 1

l2
∝ 1

r

This implies that **the perihelion shift is more significant for planets closer to the Sun**.
The innermost planet, **Mercury**, is ideal for observing this effect. Mercury’s orbit

has a notable eccentricity e ≈ 0.2, with radial distance varying between

r− ≈ 4.6× 1010 m, r+ ≈ 7× 1010 m

We can use the relativistic orbit formula for precession derived earlier. For elliptical
orbits, the angular momentum can be related to the semi-major axis via:

r± =
l2

GM
· 1

1± e
⇒ l2 = GM · r+(1− e)

Thus, the perihelion shift per revolution becomes:

δ =
6πGM

c2l2
=

6πGM

c2 ·GM · r+(1− e)
=

6π

c2r+(1− e)

Plugging in the values:

δ ≈ 6π

(3× 108)2 · 7× 1010 · (1− 0.2)
≈ 5.0× 10−7 radians

Although this is a very small angle per orbit, **the effect is cumulative**. Mercury
completes about 415 orbits per century, so the total precession is:

∆ϕcentury = 415 · δ ≈ 2.1× 10−4 radians per century

Astronomers measure angular displacement in **arcseconds**, where:

1◦ = 3600′′ ⇒ 1′′ =
2π

360 · 3600
≈ 4.848× 10−6 radians

Therefore, the observed perihelion shift is:

2.1× 10−4

4.848× 10−6
≈ 43′′ per century

This **matches the observed anomalous precession** of Mercury’s orbit, one of the
earliest and strongest confirmations of general relativity. Subsequent observations of
Venus and Earth’s orbits also agree with relativistic predictions.
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2.5.1 Newtonian Contributions from Other Planets

The general relativistic contribution of 43′′/century is not the full story — Mercury’s
observed perihelion shift is roughly 575′′/century. Most of this ( 532′′) arises from the
gravitational perturbation of the other planets, a purely Newtonian effect.

We approximate the influence of an outer planet of mass M ′ orbiting at radius R as a
circular ring of mass-per-unit-length M ′/(2πR) in the same plane. Since Mercury orbits
much faster, we may average over the outer planet’s position:

The Newtonian potential from the Sun is still

V⋆(r) = −GM
r

and from the ring:

Vring(r) = −GM
′

2πR

∫ 2π

0

dθ√
R2 + r2 − 2Rr cos θ

≈ −GM
′

R

(
1 +

r2

4R2
+ · · ·

)
Dropping r-independent terms, the effective potential per unit mass becomes

Veff(r) = −GM
r

+
l2

2r2
−
∑
i

GM ′
i

4R3
i

r2

where the sum runs over all outer planets.
Switching to u(ϕ) = 1/r, the perturbed orbit equation is:

d2u

dϕ2
+ u− GM

l2
= −αu3

where

α =
∑
i

G3M4

l6
M ′

i

2R3
i

In the small-α, e limit and to first order in eccentricity, the perihelion shift per orbit is:

δ = 3π α = 3π
∑
i

M ′
i

2M

(
r0
Ri

)3

with r0 = (1− e)r+.
Using M =M⊙ ≈ 2× 1030kg, r0 ≈ 5.64× 1010m, and data:

Planet M ′
i (10

24 kg) Ri (10
11m)

Venus 4.9 1.08
Earth 6.0 1.52
Mars 0.64 2.28
Jupiter 1900 7.78
Saturn 570 14.0

A quick estimate shows Jupiter and Venus dominate. Summing their contributions
yields:

δ ≈ 40× 10−7 rad/orbit ⇒ 344′′ / century

which is larger than the relativistic 43′′ but still short of the ∼ 532′′ from full Newtonian
analysis.
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Higher-order corrections Including further terms in the ring’s potential expansion:

Vring(r) = −2πR
GM ′

2πR

[
1 +

r2

4R2
+

9r4

64R4
+ · · ·

]
leads to a more accurate perihelion shift formula:

δ = π
∑
i

M ′
i

2M

[
3

(
r0
Ri

)3

+ 45

(
r0
Ri

)5

+ · · ·

]
Accounting for higher-order terms (especially Venus’s significant (r0/R) ≈ 0.5) yields:

δ ≈ 59× 10−7 rad/orbit ⇒ 507′′ / century

bringing us closer to the full Newtonian prediction of 532′′. With more precise multi-
pole expansions and orbital averaging, one recovers the full ∼ 532′′/century, reconciling
observation and Newtonian perturbation theory.

Null Geodesics and the Photon Sphere

We now turn to the motion of massless particles (i.e., light) in the Schwarzschild geometry.
As before, we use the general equations of motion derived earlier, but we now impose the
**null constraint**:

−A(r)c2ṫ2 + A−1(r)ṙ2 + r2ϕ̇2 = 0

where A(r) = 1− 2GM
c2r

. This replaces the timelike constraint used for massive particles.
Just as in the timelike case, the motion reduces to an effective one-dimensional radial

motion:
1

2
ṙ2 + Vnull(r) =

1

2

E2

c2

where the **effective potential** is now:

Vnull(r) =
l2

2r2

(
1− 2GM

c2r

)
This potential behaves differently from the massive case: - As r → ∞, Vnull(r) → 0+

- As r → 0, Vnull(r) → −∞
The potential has a **maximum**, located at:

dVnull
dr

= 0 ⇒ r⋆ =
3GM

c2

This is known as the **photon sphere**, the radius at which light can orbit the black
hole.

The maximum value of the potential is:

Vnull(r⋆) =
l2c4

54G2M2

This orbit is **unstable**: any small radial perturbation causes the photon to either
fall into the black hole or escape to infinity. Nonetheless, this radius plays a central role in
black hole optics — light from an accretion disk appears to emerge from near the photon
sphere, forming the **bright ring** seen in EHT images (though the resolution may not
be sufficient to resolve the photon sphere precisely).
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Behavior Based on Energy The fate of a light ray depends on its total energy E
and angular momentum l, specifically on the comparison between E2/2c2 and the barrier
height Vnull(r⋆):

• Case 1: E < lc3√
27GM

Light with energy below the angular momentum barrier cannot escape from within
r⋆. It will fall toward the black hole after looping around — or, if coming from
outside, will be deflected (scattered) and escape back to infinity.

• Case 2: E > lc3√
27GM

Light now has enough energy to overcome the barrier. If emitted from r < r⋆, it
may escape to infinity — but only if r > Rs =

2GM
c2

. Conversely, light from infinity
may spiral in and fall into the black hole.

This behavior encodes rich phenomena like gravitational lensing, photon capture cross
sections, and the formation of black hole shadows. We will examine light deflection and
capture cross sections in more detail in subsequent sections.

Gravitational Lensing

To analyze the deflection of light rays in more detail, we again introduce the inverse radial
parameter u = 1/r. The null geodesic equation becomes:(

du

dϕ

)2

+ u2
(
1− 2GM

c2
u

)
=

E2

l2c2

Differentiating this yields the second-order equation:

d2u

dϕ2
+ u =

3GM

c2
u2 (1.54)

We solve this perturbatively in the small dimensionless parameter β̃ = GM
c2b

, where b
is the **impact parameter**.

At zeroth order, we ignore the right-hand side:

d2u0
dϕ2

+ u0 = 0 ⇒ u0 =
1

b
sinϕ

which describes a straight-line trajectory: r sinϕ = b.
To first order in β̃, the equation becomes:

d2u1
dϕ2

+ u1 =
3

b2
sin2 ϕ =

3

2b2
(1− cos 2ϕ)

whose general solution is:

u1 = A cosϕ+B sinϕ+
1

2b2
(3 + cos 2ϕ)

Choosing integration constants A = 2
b
, B = 0 to match the asymptotic behavior at

ϕ = π, the total solution becomes:

u(ϕ) =
1

b
sinϕ+

GM

2b2c2
(3 + 4 cosϕ+ cos 2ϕ)
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To find the total bending angle, we set u = 0 (i.e., r → ∞) and approximate sinϕ ≈ ϕ,
cosϕ ≈ 1 near ϕ = 0. Solving for the deviation, we find:

δϕ =
4GM

bc2
(1.55)

This is the celebrated result of **gravitational lensing**: light is deflected by an angle
δϕ when passing by a massive object at impact parameter b. This prediction, confirmed
observationally during the 1919 solar eclipse, was one of the first major triumphs of
general relativity.

3 Differential Geometry

3.1 Introduction to Differential Geometry

Describing gravity as a geometric phenomenon requires a mathematical framework capa-
ble of handling curved spaces and spacetimes. This framework is provided by differential
geometry, which generalizes the tools of calculus to smooth manifolds that are not nec-
essarily flat.

In the context of general relativity, spacetime is modeled as a four-dimensional mani-
fold equipped with a metric tensor that determines distances and causal structure. Unlike
Euclidean space, such manifolds can exhibit intrinsic curvature, which is directly related
to the distribution of mass-energy.

Differential geometry introduces a range of geometric structures that are necessary for
formulating physical theories in curved backgrounds. These include smooth manifolds,
charts and atlases for coordinate systems, tangent spaces, vector fields, and tensors. All
these objects transform covariantly under changes of coordinates, ensuring that physical
laws remain independent of the observer’s frame.

This section provides a minimal introduction to the concepts and structures that are
essential for formulating general relativity and other geometrically motivated physical
theories. The emphasis is on definitions and their logical relationships, with formal proofs
and topological details omitted for brevity.

3.2 Manifolds

A manifold is the basic geometric setting for formulating physical theories involving
curvature and local smooth structure. Informally, an n-dimensional manifold is a space
that, around every point, resembles Rn, although its global structure may be curved or
topologically nontrivial.

At this stage, the manifold is assumed to have minimal structure. Notably, no intrinsic
notion of distance, angle, or curvature is defined yet. These require additional geometric
structures to be introduced later, such as a metric tensor. For now, the focus is on the
topological and differentiable properties that define a smooth manifold.

Examples of manifolds include:

• The Euclidean space Rn

• The n-sphere Sn, defined as the set of points in Rn+1 at unit distance from the
origin
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• The n-torus T n = S1 × · · · × S1

In physics, manifolds arise naturally. Classical configuration spaces, phase spaces, and
the state spaces in thermodynamics are all examples of manifolds. In general relativity,
spacetime itself is modeled as a smooth four-dimensional manifold, to which additional
structure — such as a Lorentzian metric — is applied to describe gravitational dynamics.

The formal definition of a manifold and the associated coordinate systems will follow
in subsequent sections. These will provide the language necessary to define vector fields,
tensors, and curvature in a consistent and coordinate-independent manner.

3.2.1 Topological Spaces

Before defining manifolds, we begin with the underlying structure of a topological space.
This provides the minimal framework necessary for discussing continuity, convergence,
and neighbourhoods.

Definition: A topological space M is a set equipped with a collection T of subsets
called the topology, satisfying:

(i) M ∈ T , ∅ ∈ T

(ii) The finite intersection of open sets is an open set

(iii) The arbitrary union of open sets is an open set

An open set O ∈ T is called a neighbourhood of a point p ∈M if p ∈ O.
A topological space is called Hausdorff if for any two distinct points p, q ∈ M , there

exist disjoint neighbourhoods O1, O2 ∈ T such that p ∈ O1, q ∈ O2, and O1 ∩ O2 = ∅.
This separation property is assumed in all physically meaningful spaces.

Example: The real line R, with open intervals as basic open sets, forms a Hausdorff
topological space.

Definition (Homeomorphism): A map f : M → M̃ between two topological
spaces is a homeomorphism if:

(i) f is bijective

(ii) f is continuous

(iii) f−1 is also continuous

Spaces related by a homeomorphism are topologically equivalent. For example, a
torus and a coffee mug are homeomorphic, illustrating that topology preserves qualitative
geometric features but not distance or curvature.

3.2.2 Differentiable Manifolds

An n-dimensional differentiable manifold is a Hausdorff topological spaceM that is locally
modeled on Rn and supports smooth coordinate transitions.

Definition: M is a differentiable manifold if:

(i) For every p ∈M , there exists an open set O ⊂M and a homeomorphism φ : O →
U ⊂ Rn.
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(ii) If Oα ∩Oβ ̸= ∅, then the transition map φβ ◦ φ−1
α : φα(Oα ∩Oβ) → φβ(Oα ∩Oβ) is

C∞, as is its inverse.

Each map φα is called a chart ; the collection of charts forms an atlas. Coordinates of
a point p ∈ Oα are denoted φα(p) = (x1(p), . . . , xn(p)), or simply xµ.

If a point lies in overlapping charts, transition functions relate the coordinate descrip-
tions. Compatibility ensures that overlapping charts yield consistent smooth structure.

Multiple compatible atlases can define the same differentiable structure. A differen-
tiable structure is fixed by a maximal atlas — one containing all charts compatible with
a given atlas.

3.2.3 Smooth Maps and Diffeomorphisms

The utility of local coordinate charts lies in enabling calculus on manifolds by leveraging
familiar analysis on Rn.

A function f :M → R is said to be smooth if for every chart φ : O ⊂M → U ⊂ Rn,
the composition f ◦ φ−1 : U → R is smooth.

Given manifolds M and N , a map f : M → N is smooth if for all charts φ : O ⊂
M → U ⊂ RdimM and ψ : O′ ⊂ N → V ⊂ RdimN , the map ψ ◦ f ◦ φ−1 : U → V is
smooth.

A diffeomorphism is a bijective, smooth map f : M → N whose inverse f−1 is also
smooth. If such a map exists, the manifolds M and N are said to be diffeomorphic.

Diffeomorphism is a stronger condition than homeomorphism: all diffeomorphic man-
ifolds are homeomorphic, but the converse is not true. Manifolds may admit multiple
inequivalent differentiable structures. For instance:

• The 7-sphere S7 admits exotic smooth structures that are homeomorphic but not
diffeomorphic.

• Rn is uniquely smooth for all n ̸= 4, but R4 admits uncountably many inequivalent
smooth structures.

These exotic structures are mostly of mathematical interest, with limited applications
in physics.

3.3 Tangent Spaces

To define differentiation on a manifold M , consider a smooth function f :M → R and a
chart φ : O ⊂M → U ⊂ Rn around a point p ∈M . This gives a function f◦φ−1 : U → R,
which we can differentiate using standard calculus on Rn. In coordinates xµ, we define:

∂f

∂xµ

∣∣∣∣
p

:=
∂(f ◦ φ−1)

∂xµ

∣∣∣∣
φ(p)

This definition is coordinate-dependent. Our goal is to construct a coordinate-independent
notion of differentiation at p, which leads to the concept of the tangent space TpM , the
vector space of all derivations at p— linear maps acting on smooth functions f satisfying
the Leibniz rule:

v(fg) = v(f)g(p) + f(p)v(g) ∀f, g ∈ C∞(M)

We will see that any coordinate system {xµ} around p gives a natural basis
{

∂
∂xµ

}
p

for TpM , and coordinate transformations act on these basis vectors via the chain rule.
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3.3.1 Tangent Vectors

A tangent vector at a point p ∈M is defined as a linear map

v : C∞(M) → R

satisfying the Leibniz rule:

v(fg) = v(f)g(p) + f(p)v(g)

for all smooth functions f, g ∈ C∞(M). The set of all such derivations at p forms a real
vector space, called the tangent space at p, denoted TpM .

Given a chart (x1, . . . , xn) around p, we define the basis of TpM as:{
∂

∂xµ

∣∣∣∣
p

}n

µ=1

Each basis vector acts on a function f ∈ C∞(M) via:

∂

∂xµ

∣∣∣∣
p

(f) :=
∂(f ◦ φ−1)

∂xµ

∣∣∣∣
φ(p)

Any tangent vector v ∈ TpM can be expressed as:

v = vµ
∂

∂xµ

∣∣∣∣
p

with components vµ ∈ R. Under a change of coordinates, these components transform
via the Jacobian:

v′ν =
∂x′ν

∂xµ
vµ

This makes tangent vectors geometric objects independent of coordinates.

Theorem. The tangent space TpM at a point p ∈ M is an n-dimensional real vector
space. Given a coordinate chart (x1, . . . , xn) around p, the vectors{

∂

∂xµ

∣∣∣∣
p

}n

µ=1

form a basis for TpM .
Any tangent vector Xp ∈ TpM can be expressed as

Xp = Xµ ∂

∂xµ

∣∣∣∣
p

where Xµ ∈ R are the components of the vector in the chosen coordinate basis.
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3.3.2 Changing Coordinates

Tangent vectors are geometric objects that exist independently of any coordinate system.
However, to express them concretely, we often introduce a chart φ with coordinates xµ,
which induces a natural basis for the tangent space TpM given by:{

∂

∂xµ

∣∣∣∣
p

}
This is known as a coordinate basis, since each basis vector corresponds to a partial
derivative with respect to a coordinate direction.

Under a change of coordinates xµ → x′ν , the basis vectors transform as:

∂

∂x′ν

∣∣∣∣
p

=
∂xµ

∂x′ν
∂

∂xµ

∣∣∣∣
p

and hence the components Xµ of any vector Xp = Xµ ∂
∂xµ must transform accordingly to

preserve the geometric object:

X ′ν =
∂x′ν

∂xµ
Xµ

This ensures that the vector itself is invariant:

Xp = Xµ ∂

∂xµ
= X ′ν ∂

∂x′ν

Coordinate vs. Non-Coordinate Bases. While coordinate bases arise naturally
from charts, we can also work with more general bases {eµ}, not necessarily related to
coordinate derivatives. These are called non-coordinate bases. A particularly important
example of this is the vielbein or frame field, which provides a local orthonormal basis at
each point and will be discussed in Section 3.4.

In all cases, physical and geometric quantities must be independent of the coordinate
system chosen. This principle will guide our construction of all further structures on
manifolds.

3.4 Vector Fields

Previously, we defined tangent vectors at a single point p ∈M . It is often more useful to
consider a smooth assignment of a tangent vector to every point in the manifold. Such
an object is called a vector field.

A vector field X on a manifold M is a smooth map that assigns to each point p ∈M
a tangent vector Xp ∈ TpM . Equivalently, a vector field is a linear map:

X : C∞(M) → C∞(M)

such that X(f)(p) = Xp(f), where Xp acts as a derivation on f ∈ C∞(M).
The space of all smooth vector fields on M is denoted by X(M).
In a coordinate chart (xµ), any vector field can be written locally as:

X = Xµ(x)
∂

∂xµ

where the Xµ ∈ C∞(O) are smooth functions defined on the open set O ⊂M covered by
the chart. To define X globally, such local expressions must be smoothly compatible on
chart overlaps.
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3.4.1 Integral Curves

An alternative perspective on vector fields is through the notion of flows. A flow on a
manifold M is a one-parameter family of diffeomorphisms σt :M →M , satisfying

σ0 = idM , σs ◦ σt = σs+t, and σ−t = σ−1
t

This defines a smooth action of R on M , with each point p ∈ M tracing out a smooth
curve under the flow. These curves are called integral curves or orbits of the flow.

The vector field X generated by the flow is defined as the tangent to these integral
curves:

Xµ(xµ(t)) =
dxµ(t)

dt

where xµ(t) are the coordinate functions of the flow line passing through a point.
Conversely, given a smooth vector field X on M , we can construct its integral curves

by solving the ordinary differential equation

dxµ

dt
= Xµ(x(t)), xµ(0) = xµinitial

This equation defines a curve whose velocity at each point equals the vector field evaluated
at that point. These curves are often visualized as streamlines of the vector field, and
together they form the flow generated by X, at least locally.

The existence and uniqueness of such flows is guaranteed by standard results in dif-
ferential equations, provided X is smooth.

3.4.2 Lie Derivatives, Push-Forward, and Pull-Back

Push-Forward. Given a smooth map f :M → N between manifolds, the push-forward
(or differential) f∗ maps tangent vectors from TpM to Tf(p)N . For Xp ∈ TpM , the push-
forward is defined via its action on smooth functions g ∈ C∞(N) as:

(f∗Xp)(g) := Xp(g ◦ f)

This constructs a vector at f(p) in N from a vector at p in M . Intuitively, it transports
directions forward along the map f .

Pull-Back. In contrast, the pull-back operates in the opposite direction. Given f :
M → N and a differential form ω ∈ Ωk(N), the pull-back f ∗ω ∈ Ωk(M) is the unique
form on M satisfying:

(f ∗ω)p(v1, . . . , vk) := ωf(p)(f∗v1, . . . , f∗vk)

for vi ∈ TpM . That is, we use f∗ to push vectors forward, then apply the original form
ω.

Lie Derivative. The Lie derivative measures how a tensor field changes as it flows
along a vector field X. For a scalar function f , the Lie derivative is just the directional
derivative:

LXf = X(f)
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For a vector field Y , the Lie derivative is given by the commutator:

LXY = [X, Y ]

For a differential form ω, the Lie derivative obeys Cartan’s formula:

LXω = d(iXω) + iX(dω)

Here, iX denotes the interior product (contraction) with X, and d is the exterior deriva-
tive.

The Lie derivative preserves the geometric meaning of a field under flow, and is
coordinate-independent. It plays a central role in symmetries, conservation laws, and
the formulation of physical theories on manifolds.

3.5 Tensors

Let V be a vector space. The dual space V ∗ is defined as the set of all linear maps from
V → R. That is,

V ∗ := {ω : V → R | ω is linear}.

This mirrors the familiar bra-ket notation from quantum mechanics, where bras ⟨ϕ| ∈ H∗

act on kets |ψ⟩ ∈ H via ⟨ϕ|ψ⟩ ∈ C.
Given a basis {eµ} for V , the dual basis {fµ} for V ∗ is defined by

f ν(eµ) = δνµ.

A vector X ∈ V can be expressed as X = Xµeµ, and its action under f ν ∈ V ∗ gives
f ν(X) = Xν .

Although V ∼= V ∗ in finite dimensions, this identification is basis dependent. In con-
trast, the double dual (V ∗)∗ is canonically isomorphic to V in a natural, basis-independent
way.

A tensor is a multilinear map involving both vectors and covectors. Formally, a tensor
of type (k, ℓ) is a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
k times

×V × · · · × V︸ ︷︷ ︸
ℓ times

→ R.

The space of such tensors is denoted T k
ℓ (V ).

Tensors transform under changes of basis in a well-defined way and include familiar
objects such as: - Scalars: type (0, 0) - Vectors: type (1, 0) - Covectors (dual vectors):
type (0, 1) - Linear maps (e.g., matrices): type (1, 1) - Bilinear forms: type (0, 2)

Given a basis {eµ} for V and dual basis {f ν}, any tensor T ∈ T k
ℓ (V ) can be expressed

as
T = T µ1...µk

ν1...νℓ
eµ1 ⊗ · · · ⊗ eµk

⊗ f ν1 ⊗ · · · ⊗ f νℓ ,

where the coefficients T µ1...µk
ν1...νℓ

∈ R specify the tensor in components.
This framework extends naturally to tensors on manifolds, where each tangent space

Tp(M) and cotangent space T ∗
p (M) give rise to tensor fields defined pointwise over the

manifold.
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3.5.1 Covectors and One-Forms

At each point p ∈M , the cotangent space T ∗
p (M) is the dual space to the tangent space

Tp(M). Elements of T ∗
p (M) are called covectors or one-forms. Given a basis {eµ} for

Tp(M), the dual basis {dxµ} satisfies

dxµ(eν) = δµν .

Any one-form ω ∈ T ∗
p (M) can be written as ω = ωµdx

µ.
A one-form field assigns a covector to every point p ∈M smoothly. The collection of

all one-forms on M is denoted Λ1(M).
A canonical example comes from the differential of a smooth function f ∈ C∞(M),

defined by
df(X) := X(f),

for any vector field X. In coordinates, this takes the form

df =
∂f

∂xµ
dxµ.

Under a change of coordinates xµ → x̃ν , one-forms transform covariantly :

dxµ =
∂xµ

∂x̃ν
dx̃ν , so that ω = ωµdx

µ = ω̃νdx̃
ν ,

with

ω̃ν =
∂xµ

∂x̃ν
ωµ.

This covariant transformation is the dual behavior to the contravariant transformation
of vectors. The index placement in ωµ (subscript) reflects this covariance.

Lie Derivatives and Pull-Backs of One-Forms

Just as vector fields can be pushed forward under a smooth map ϕ : M → N , one-forms
behave oppositely: they are pulled back. Given a one-form ω ∈ Λ1(N), the pull-back
ϕ∗ω ∈ Λ1(M) is defined by

(ϕ∗ω)(X) = ω(ϕ∗X)

for any vector field X ∈ X(M). In coordinates, with xµ on M and yα on N , we have

(ϕ∗ω)µ = ωα
∂yα

∂xµ
.

To define the Lie derivative of a one-form ω along a vector field X, we use the flow
σt generated by X. The Lie derivative is then:

LXω = lim
t→0

(σ∗
tω)p − ωp

t
.

Using the expansion of σ∗
t dx

µ, we find:

LX(dx
µ) =

∂Xµ

∂xν
dxν ,

and for a general one-form ω = ωµdx
µ, the Lie derivative becomes:

LXω = (Xν∂νωµ + ων∂µX
ν) dxµ.
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Tensors and Tensor Fields

On a manifold M , we already have the tangent space Tp(M) and its dual, the cotangent
space T ∗

p (M) at each point p ∈M . A tensor at p is a multilinear map that eats vectors
and covectors and spits out real numbers.

More precisely, a (k, ℓ)-tensor at p is a multilinear map

T : T ∗
p (M)× · · · × T ∗

p (M)︸ ︷︷ ︸
k times

×Tp(M)× · · · × Tp(M)︸ ︷︷ ︸
ℓ times

→ R.

This object is linear in each slot. Tensors of type (1, 0) are vectors, and (0, 1) are one-
forms. A (0, 2)-tensor is a bilinear form, while a (1, 1)-tensor acts like a linear map from
vectors to vectors.

In a local coordinate system {xµ}, we define a basis of vector fields
{

∂
∂xµ

}
and one-

forms {dxµ}. A (k, ℓ)-tensor T can then be expanded as

T = T µ1...µk
ν1...νℓ

∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµk
⊗ dxν1 ⊗ · · · ⊗ dxνℓ ,

where T µ1...µk
ν1...νℓ

are smooth functions on M called the components of the tensor.
A tensor field is a smooth assignment of such a tensor to each point on M . The set

of all (k, ℓ)-tensor fields is denoted T k
ℓ (M).

Under coordinate transformations, tensor components transform via:

T
µ′
1...µ

′
k

ν′1...ν
′
ℓ
=
∂xµ

′
1

∂xµ1
· · · ∂x

µ′
k

∂xµk

∂xν1

∂xν
′
1
· · · ∂x

νℓ

∂xν
′
ℓ

T µ1...µk
ν1...νℓ

.

This ensures that the full tensor expression is coordinate-independent even though its
components change.

Tensors are the backbone of general relativity, where key physical quantities like the
metric, energy-momentum tensor, and curvature are all tensor fields.

The Identity Tensor. Every manifold comes equipped with a natural (1, 1)-tensor
field δ, known as the identity tensor. It acts by pairing a one-form ω ∈ T ∗

p (M) and a
vector X ∈ Tp(M) to return a real number:

δ(ω,X) = ω(X).

In a coordinate basis, this corresponds to

δ(fµ, eν) = fµ(eν) = δµν ,

where fµ = dxµ and eν = ∂/∂xν . This is simply the Kronecker delta, enforcing the
duality between vectors and covectors.

Operations on Tensor Fields

There are several standard operations that can be performed on tensor fields. Below we
list the most important ones along with their coordinate expressions.
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1. Tensor Product. Given a (k, ℓ) tensor field T and a (m,n) tensor field S, their
tensor product T ⊗ S is a (k +m, ℓ+ n) tensor field defined by

(T⊗S)(ω1, . . . , ωk+m, X1, . . . , Xℓ+n) = T (ω1, . . . , ωk, X1, . . . , Xℓ)·S(ωk+1, . . . , ωk+m, Xℓ+1, . . . , Xℓ+n).

In local coordinates, if T = T µ1...µk
ν1...νℓ

and S = Sα1...αm

β1...βn
, then

(T ⊗ S)µ1...µkα1...αm

ν1...νℓβ1...βn
= T µ1...µk

ν1...νℓ
· Sα1...αm

β1...βn
.

2. Contraction. Contraction reduces the valence of a tensor by contracting one upper
and one lower index. For example, given a (1, 1) tensor T , the trace is the scalar

Tr(T ) = T µ
µ .

In general, for a (k, ℓ) tensor T µ1...µk
ν1...νℓ

, contraction over µi and νj gives a (k − 1, ℓ − 1)
tensor.

3. Pull-back and Push-forward. Let ϕ : M → N be a smooth map between mani-
folds.

Push-forward of a vector field:

ϕ∗Xp =

(
∂yα

∂xµ
Xµ

)
∂

∂yα
.

Pull-back of a one-form:

(ϕ∗ω)p =

(
∂xµ

∂yα
ωα

)
dxµ.

These operations extend naturally to higher-rank tensors by linearly acting on each
index.

4. Lie Derivative. The Lie derivative LXT of a tensor field T with respect to a vector
field X measures the change of T along the flow generated by X.

Example: If ω = ωµdx
µ is a one-form, then

LXω = Xν∂νωµ + ων∂µX
ν ⇒ (LXω)µ = Xν∂νωµ + ων∂µX

ν .

For a vector field Y = Y µ∂µ,

[LXY ]µ = Xν∂νY
µ − Y ν∂νX

µ.

5. Index Raising and Lowering. Once a metric gµν is introduced (in Section 3), we
can raise or lower indices. For instance:

Yµ = gµνY
ν , Y µ = gµνYν .
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6. Symmetrization and Antisymmetrization. Given a tensor Tµν , we can define:

T(µν) =
1

2
(Tµν + Tνµ) (Symmetric part),

T[µν] =
1

2
(Tµν − Tνµ) (Antisymmetric part).

These operations are fundamental in defining objects such as the electromagnetic field
tensor, Riemann curvature, and differential forms.

These operations allow us to construct, transform, and interpret tensorial quantities
on a manifold in a coordinate-invariant way.

3.6 Differential Forms

Differential forms provide a general framework for integration on manifolds and encode
geometrical and physical data in a coordinate-independent way. They are antisymmetric
tensor fields built from the cotangent bundle.

3.6.1 Definition

A differential k-form on a smooth manifold M is a totally antisymmetric (0, k) tensor
field. That is,

ω ∈ Λk(M) := Γ

(
k∧
T ∗M

)
.

Locally, in a chart (xµ), a differential k-form can be written as

ω =
1

k!
ωµ1...µk

dxµ1 ∧ · · · ∧ dxµk ,

where the components ωµ1...µk
are smooth and totally antisymmetric.

3.6.2 Wedge Product

The wedge product ∧ is an associative, bilinear, and antisymmetric product on forms:

ω ∈ Λk(M), η ∈ Λl(M) ⇒ ω ∧ η ∈ Λk+l(M),

satisfying
ω ∧ η = (−1)klη ∧ ω.

In coordinates, this product combines forms with antisymmetrized tensor products of the
dxµ.

3.6.3 Exterior Derivative

The exterior derivative d : Λk(M) → Λk+1(M) satisfies:

• d(f) = df for f ∈ C∞(M),

• d2 = 0,

• d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη for ω ∈ Λk(M).

The operator d gives the de Rham complex and encodes the notion of differential without
reliance on a metric.
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3.6.4 Closed and Exact Forms

A form ω is:

• Closed if dω = 0,

• Exact if ω = dα for some α.

Every exact form is closed (since d2 = 0), but not every closed form is exact. This leads
to the de Rham cohomology:

Hk
dR(M) :=

ker(d : Λk → Λk+1)

im(d : Λk−1 → Λk)
.

3.6.5 Pullback of Forms

Given a smooth map ϕ : M → N and a form ω ∈ Λk(N), the pullback ϕ∗ω ∈ Λk(M) is
defined such that

(ϕ∗ω)(X1, . . . , Xk) = ω(ϕ∗X1, . . . , ϕ∗Xk).

In coordinates, the pullback acts as:

(ϕ∗ω)µ =
∂yα

∂xµ
ωα.

3.6.6 Applications in Physics

Differential forms appear widely in modern theoretical physics:

• The electromagnetic field strength is a closed 2-form F = dA.

• Conservation of charge: d⋆J = 0, where J is the current 1-form and ⋆ is the Hodge
dual.

• General Relativity uses differential forms to express curvature and volume integrals
in coordinate-free language.

3.6.7 Differential Forms in Electromagnetism and Thermodynamics

Differential forms provide a natural language for expressing fundamental laws of physics
in a coordinate-free and geometrically meaningful way.

Electromagnetism: The electromagnetic potential is encoded in a 1-form A ∈ Λ1(M),
from which the field strength 2-form is constructed:

F = dA ∈ Λ2(M)

This automatically satisfies the homogeneous Maxwell equations:

dF = 0

The inhomogeneous Maxwell equations are written in terms of the Hodge dual:

d ⋆ F = ⋆J

where J ∈ Λ1(M) is the current 1-form and ⋆ denotes the Hodge star operator, defined
via the spacetime metric.
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Thermodynamics: In thermodynamics, differential forms can describe the structure
of state spaces and thermodynamic processes.

A common example is the first law of thermodynamics, which can be encoded as a
1-form:

θ = dU − TdS + PdV

where θ ∈ Λ1(M) represents the infinitesimal heat/work exchange, U is internal energy,
T is temperature, S is entropy, and P, V are pressure and volume. The condition for
a thermodynamic system to be in equilibrium corresponds to the integrability condition
θ = 0.

Moreover, contact geometry generalizes this setup using a contact 1-form on a ther-
modynamic phase space, allowing the formulation of Legendre transforms and the ther-
modynamic potential hierarchy.

Differential forms thus serve as powerful tools in expressing physical laws with clarity
and geometric insight.

3.7 Integration on Manifolds

Integration on manifolds generalizes the familiar notions of line, surface, and volume inte-
grals from calculus. To define integration in a coordinate-free way, we rely on differential
forms.

3.7.1 Integrating over Submanifolds

Let ω ∈ Λk(M) be a differential k-form, and let S ⊂ M be an oriented k-dimensional
submanifold. The integral of ω over S is defined as:∫

S

ω

This is a natural generalization of vector calculus: 1-forms integrate along curves, 2-forms
over surfaces, and so on. The orientation of S is necessary for the sign of the integral to
be well-defined.

3.7.2 Stokes’ Theorem

Stokes’ Theorem provides a unifying framework for many classical theorems such as the
fundamental theorem of calculus, Green’s theorem, Gauss’ divergence theorem, and the
classical Stokes’ theorem. It states: ∫

S

dω =

∫
∂S

ω

Here S is an oriented (k + 1)-dimensional submanifold, ω ∈ Λk(M), and ∂S denotes the
boundary of S, which is naturally oriented.

This theorem is valid in any dimension and does not require coordinates. It is truly
the cornerstone of differential geometry and topology.
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3.7.3 The Mother of All Integral Theorems

Stokes’ Theorem is often called “The Mother of All Integral Theorems” because it gen-
eralizes:

• Fundamental Theorem of Calculus:
∫ b

a
f ′(x)dx = f(b)− f(a)

• Green’s Theorem:
∫∫

D

(
∂Q
∂x

− ∂P
∂y

)
dxdy =

∮
∂D
Pdx+Qdy

• Divergence Theorem:
∫∫∫

V
(∇ · F⃗ ) dV =

∫∫
∂V
F⃗ · dS⃗

• Classical Stokes’ Theorem:
∫∫

S
(∇× F⃗ ) · dS⃗ =

∮
∂S
F⃗ · dr⃗

All of these are special cases of the single, elegant principle:∫
S

dω =

∫
∂S

ω

This formulation underscores the deep relationship between differentiation (via d) and
integration, and is one of the most profound ideas in modern geometry and physics.

4 Riemannian Geometry and the Metric

To measure lengths, angles, and volumes on a manifold, we introduce a new structure: a
metric. This turns our differentiable manifold into a Riemannian manifold.

4.1 The Metric Tensor

A Riemannian metric g on a manifold M is a smooth assignment of an inner product

gp : TpM × TpM → R

at each point p ∈M , such that:

• gp is bilinear and symmetric.

• gp(X,X) > 0 for all non-zero X ∈ TpM (positive-definite).

In local coordinates {xµ}, the metric is written as a symmetric 2-tensor:

g = gµν(x) dx
µ ⊗ dxν

The components gµν define a symmetric matrix that varies smoothly across the manifold.

4.2 Measuring with the Metric

Once we have a metric, we can compute:

• Lengths of tangent vectors: ∥X∥ =
√
g(X,X)

• Angles between vectors: cos θ =
g(X, Y )

∥X∥ · ∥Y ∥
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• Lengths of curves: For a smooth curve γ(t), a ≤ t ≤ b,

Length(γ) =

∫ b

a

√
gµν

dxµ

dt

dxν

dt
dt

• Volumes via the volume form:

dV =
√

det g dx1 ∧ dx2 ∧ · · · ∧ dxn

4.2.1 Properties of the Metric

A metric g is a (0, 2) tensor field on a manifold M that allows us to define lengths and
angles. It satisfies:

• Symmetry: g(X, Y ) = g(Y,X) for all X, Y ∈ TpM

• Non-degeneracy: If g(X, Y ) = 0 for all Y , then X = 0

In local coordinates, the metric takes the form

g = gµν(x) dx
µ ⊗ dxν

which is often abbreviated via the line element

ds2 = gµν(x) dx
µdxν

The components gµν can be extracted by evaluating the metric on basis vectors:

gµν(x) = g

(
∂

∂xµ
,
∂

∂xν

)
The metric matrix gµν is symmetric and, by Sylvester’s law of inertia, it can always

be diagonalized at a point with a fixed number of positive and negative eigenvalues. This
leads to the definition of the signature of the metric:

• Riemannian: All positive (e.g., (+ + +))

• Lorentzian: One negative, rest positive (e.g., (−+++))

4.2.2 Riemannian Manifolds

A Riemannian manifold is a smooth manifold M equipped with a metric g that is:

• Positive-definite: g(X,X) > 0 for all non-zero X ∈ TpM

This condition ensures that all distances and angles measured by g are real and non-
negative. The metric defines:

• Length of a vector: ∥X∥ =
√
g(X,X)

• Angle between vectors: via the inner product g(X, Y )
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• Length of a curve: For a path γ(t), the length is

L[γ] =

∫ b

a

√
g(γ̇(t), γ̇(t)) dt

• Geodesic distance: The distance between points p, q ∈M is the infimum of L[γ]
over all paths γ from p to q

In contrast, a Lorentzian manifold allows g(X,X) to be negative for some X, as
in general relativity. Unless otherwise stated, we take all metrics to be Riemannian from
here on.

4.2.3 Lorentzian Manifolds

A Lorentzian manifold is a smooth manifold M equipped with a metric g of signa-
ture (−,+,+,+, . . .). Unlike Riemannian metrics, the Lorentzian metric is not positive-
definite.

This means for a tangent vector X ∈ TpM , the norm g(X,X) can be:

• Timelike if g(X,X) < 0

• Null (or lightlike) if g(X,X) = 0 and X ̸= 0

• Spacelike if g(X,X) > 0

This classification allows us to model causal structure and the behavior of light and
matter in spacetime. In particular:

• Lorentzian manifolds provide the geometric framework of general relativity.

• Timelike and null vectors define allowable worldlines for massive and massless par-
ticles, respectively.

The standard model of 4-dimensional spacetime in general relativity is a 4-dimensional
Lorentzian manifold with signature (−,+,+,+).

The Metric as an Isomorphism

The metric g defines a natural isomorphism between the tangent and cotangent spaces
of a manifold M . This allows us to convert vectors to covectors and vice versa using the
metric components.

Lowering an Index (Vector to Covector): Given a vector field X = Xµ∂µ, we can
associate to it a one-form (also called a covector) via the metric:

Xν = gµνX
µ ⇒ X♭ = Xν dx

ν

This operation is sometimes called the flat map, or the musical isomorphism ♭.
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Raising an Index (Covector to Vector): Conversely, given a one-form ω = ωµ dx
µ,

we can associate a vector field using the inverse metric gµν :

ωµ = gµνων ⇒ ω♯ = ωµ ∂µ

This operation is called the sharp map, denoted ♯.

Non-Degeneracy: These maps are only possible because the metric g is non-degenerate,
meaning gµν has an inverse gµν . This guarantees a one-to-one correspondence between
vectors and covectors.

The Volume Form

Once a metric g is introduced on a smooth n-dimensional manifoldM , it defines a natural
volume form — a top-degree differential form that allows us to measure volume.

Let {x1, . . . , xn} be local coordinates and the metric written as

g = gµν(x) dx
µ ⊗ dxν

Then the volume form is given by

volg =
√
| det g| dx1 ∧ dx2 ∧ · · · ∧ dxn

where:

• det g is the determinant of the matrix [gµν ],

• The square root
√

| det g| ensures correct transformation under coordinate changes.

This volume form allows us to integrate scalar functions f ∈ C∞(M) over M as:∫
M

f volg

4.2.4 The Hodge Dual

Given a Riemannian or Lorentzian manifold (M, g) of dimension n, the Hodge dual is
an isomorphism

⋆ : Λp(M) → Λn−p(M)

that maps a p-form to an (n−p)-form. It depends on both the metric g and the orientation
of M .

Let {θ1, . . . , θn} be an oriented orthonormal coframe at a point p ∈ M . Then the
Hodge dual of a simple p-form

ω = θi1 ∧ · · · ∧ θip

is given by

⋆ω =
1

(n− p)!
ϵ
i1...ip

jp+1...jn
θjp+1 ∧ · · · ∧ θjn

where ϵ is the totally antisymmetric Levi-Civita symbol and indices are raised and lowered
using the metric g.
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In local coordinates, for a general p-form

ω =
1

p!
ωµ1...µpdx

µ1 ∧ · · · ∧ dxµp

the Hodge dual is

⋆ω =

√
| det g|

p!(n− p)!
ωµ1...µpϵµ1...µpν1...νn−pdx

ν1 ∧ · · · ∧ dxνn−p

Properties:

• ⋆ ⋆ ω = (−1)p(n−p)ω for Riemannian metrics.

• The Hodge star allows one to define an inner product on forms:

⟨ω, η⟩ =
∫
M

ω ∧ ⋆η

• The Hodge star is central in defining codifferentials and Laplace operators on dif-
ferential forms.

4.2.5 A Sniff of Hodge Theory and Hodge’s Theorem

Let (M, g) be a compact, oriented Riemannian manifold. The Hodge star operator ⋆ and
the exterior derivative d allow us to define the codifferential δ by

δ := (−1)np+n+1 ⋆ d⋆ : Λp(M) → Λp−1(M)

Using this, we define the Laplace–de Rham operator as

∆ := dδ + δd

A p-form ω ∈ Λp(M) is called harmonic if

∆ω = 0

The set of all harmonic p-forms on M is denoted

Hp(M) := {ω ∈ Λp(M) | ∆ω = 0}

Hodge’s Theorem. On any compact, oriented Riemannian manifold M , there is an
isomorphism:

Hp(M) ∼= Hp
dR(M)

where Hp
dR(M) is the p-th de Rham cohomology group.

This result implies that every cohomology class has a unique harmonic representative.
Moreover, the Betti numbers bp, which are defined as

bp := dimHp
dR(M)

can equivalently be computed as the number of linearly independent harmonic p-forms:

bp = dimHp(M)

Hodge theory thus provides a powerful link between differential geometry, analysis, and
topology.
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4.3 Connections and Curvature

Vector fields act as differential operators on smooth functions, giving us a natural notion
of differentiation: X(f). However, for general tensor fields, differentiating is more sub-
tle. Tensors at different points live in distinct vector spaces, so they cannot be directly
subtracted or compared.

To make sense of differentiation on a manifold, we introduce a new structure called
a connection. A connection defines a rule for comparing vectors at nearby points and
allows us to differentiate tensor fields in a way that respects both smoothness and geom-
etry.

This leads to the concept of the covariant derivative. Given vector fields X and Y ,
the covariant derivative of Y along X is denoted

∇XY

and satisfies the following key properties:

• Linearity in both X and Y .

• Leibniz rule: ∇X(fY ) = X(f)Y + f∇XY for f ∈ C∞(M).

• Tensorial in X: ∇fXY = f∇XY .

The covariant derivative generalizes directional derivatives from flat space to curved
manifolds. It is a crucial tool in defining curvature and geodesics, and is foundational to
Riemannian geometry and general relativity.

4.3.1 The Covariant Derivative

The covariant derivative provides a way to differentiate tensor fields on a manifold in a
manner that respects the manifold’s geometric structure. Unlike partial derivatives, which
depend on a coordinate chart, the covariant derivative incorporates additional geometric
data — a connection — to ensure that the derivative is well-defined under changes of
coordinates.

Given a vector field X and a tensor field T , the covariant derivative of T along X
is denoted ∇XT . The operation ∇ takes as input a vector field and a tensor field and
returns another tensor field of the same type as T .

For vector fields X, Y , the covariant derivative ∇XY is again a vector field, and it
must satisfy the following axioms:

1. Linearity in the direction vector field:

∇fX+gYZ = f∇XZ + g∇YZ for f, g ∈ C∞(M)

2. Leibniz rule (product rule):

∇X(fY ) = X(f)Y + f∇XY for f ∈ C∞(M)

3. Tensoriality in the lower slot:

∇Xf = X(f)

for f ∈ C∞(M), recovering the usual derivative of a function.
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In Coordinates: Let {xµ} be a local coordinate system and
{

∂
∂xµ

}
the associated

coordinate basis. The covariant derivative of the basis vector fields is given by

∇ν

(
∂

∂xµ

)
= Γλ

νµ

∂

∂xλ

where Γλ
νµ are the connection coefficients or Christoffel symbols.

Given a vector field V = V µ ∂
∂xµ , the covariant derivative in the direction ∂ν is:

∇νV
µ = ∂νV

µ + Γµ
νρV

ρ

This shows that the covariant derivative differs from the partial derivative by an extra
term involving the Christoffel symbols, which account for the curvature or twisting of the
manifold.

Covariant Derivative of General Tensors: For a (k, l)-tensor field T µ1...µk
ν1...νl

, the co-
variant derivative is defined as:

∇ρT
µ1...µk
ν1...νl

= ∂ρT
µ1...µk
ν1...νl

+
k∑

i=1

Γµi

ρλT
µ1...λ...µk
ν1...νl

−
l∑

j=1

Γλ
ρνj
T µ1...µk

ν1...λ...νl

Each upper index gets a + Christoffel term, and each lower index gets a − Christoffel
term. This structure ensures that ∇ preserves tensorial transformation rules.

Interpretation: The covariant derivative can be viewed as the rate of change of a
tensor field with respect to a given vector direction, while taking into account the under-
lying geometry of the manifold. This operation allows us to define concepts like parallel
transport, geodesics, curvature, and more.

Remark: On a manifold equipped with a metric gµν , there exists a unique connection
— the Levi-Civita connection — that is compatible with the metric (i.e., ∇g = 0) and
torsion-free. This is the connection used in Riemannian and Lorentzian geometry.

4.3.2 The Connection is Not a Tensor

Although the covariant derivative involves objects called connection coefficients (or Christof-
fel symbols), it is important to note that these do not transform as tensors under coor-
dinate changes.

To see this, consider the Christoffel symbols Γλ
µν defined through the action of the

covariant derivative on a vector field V µ:

∇νV
µ = ∂νV

µ + Γµ
νρV

ρ

If Γµ
νρ were the components of a (1, 2)-tensor, then under a coordinate transformation

xµ 7→ x̃α, they would obey the usual tensorial transformation law:

Γ̃α
βγ =

∂x̃α

∂xµ
∂xν

∂x̃β
∂xρ

∂x̃γ
Γµ
νρ
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However, this is not the transformation law that Γµ
νρ follows. Instead, under a change

of coordinates, the Christoffel symbols pick up an additional inhomogeneous term:

Γ̃α
βγ =

∂x̃α

∂xµ
∂xν

∂x̃β
∂xρ

∂x̃γ
Γµ
νρ +

∂x̃α

∂xµ
∂2xµ

∂x̃β∂x̃γ

The second term, involving second derivatives of the coordinate transformation, is
what disqualifies the Christoffel symbols from being tensor components.

Conclusion: The connection is a rule for differentiating tensor fields that depends on
the chosen coordinate system or frame. Its transformation law reveals that it is not a
tensor. However, combinations of Christoffel symbols — such as in the Riemann curvature
tensor — can yield true tensorial objects.

4.3.3 The Connection is Not a Tensor

Although the covariant derivative involves objects called connection coefficients (or Christof-
fel symbols), it is important to note that these do not transform as tensors under coor-
dinate changes.

To see this, consider the Christoffel symbols Γλ
µν defined through the action of the

covariant derivative on a vector field V µ:

∇νV
µ = ∂νV

µ + Γµ
νρV

ρ

If Γµ
νρ were the components of a (1, 2)-tensor, then under a coordinate transformation

xµ 7→ x̃α, they would obey the usual tensorial transformation law:

Γ̃α
βγ =

∂x̃α

∂xµ
∂xν

∂x̃β
∂xρ

∂x̃γ
Γµ
νρ

However, this is not the transformation law that Γµ
νρ follows. Instead, under a change

of coordinates, the Christoffel symbols pick up an additional inhomogeneous term:

Γ̃α
βγ =

∂x̃α

∂xµ
∂xν

∂x̃β
∂xρ

∂x̃γ
Γµ
νρ +

∂x̃α

∂xµ
∂2xµ

∂x̃β∂x̃γ

The second term, involving second derivatives of the coordinate transformation, is
what disqualifies the Christoffel symbols from being tensor components.

Conclusion: The connection is a rule for differentiating tensor fields that depends on
the chosen coordinate system or frame. Its transformation law reveals that it is not a
tensor. However, combinations of Christoffel symbols — such as in the Riemann curvature
tensor — can yield true tensorial objects.

4.3.4 Torsion and Curvature

Even though the connection itself is not a tensor, we can use it to build two important
objects that are tensors: the torsion and the curvature.
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Torsion: The torsion tensor T is a (1, 2) tensor defined as the antisymmetric part of
the connection when acting on vector fields:

T (X, Y ) := ∇XY −∇YX − [X, Y ]

Here, X and Y are vector fields, ∇XY is the covariant derivative of Y along X, and
[X, Y ] is the Lie bracket.

In a coordinate basis {∂µ}, the torsion components are:

T ρ
µν = Γρ

µν − Γρ
νµ

A connection is said to be torsion-free if T ρ
µν = 0.

Curvature: The curvature tensorR is a (1, 3) tensor that measures the non-commutativity
of covariant derivatives:

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

In a coordinate basis, the components of the Riemann curvature tensor are:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

Remarks:

• The torsion tensor vanishes for the Levi-Civita connection, which is the unique
connection that is both torsion-free and metric-compatible.

• The Riemann tensor plays a central role in General Relativity, encapsulating the
gravitational field in Einstein’s equations.

4.3.5 The Ricci Identity

The Ricci identity describes how the covariant derivatives of tensor fields fail to commute
due to curvature.

Let Xλ be a vector field. Then, the commutator of covariant derivatives acting on
Xλ gives:

(∇µ∇ν −∇ν∇µ)X
λ = Rλ

ρµνX
ρ

More generally, for a (r, s) tensor field Tα1...αr

β1...βs
, we have:

[∇µ,∇ν ]T
α1...αr

β1...βs
=

r∑
i=1

Rαi
ρµνT

α1...ρ...αr

β1...βs
−

s∑
j=1

Rρ
βjµν

Tα1...αr

β1...ρ...βs

Each index of the tensor contributes a curvature term: upper indices (contravariant)
rotate with +R, while lower indices (covariant) rotate with −R.

This identity is a powerful tool in differential geometry and plays a fundamental role
in deriving various geometric and physical results, including those in General Relativity.
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4.3.6 The Ricci Identity

The Ricci identity describes how the covariant derivatives of tensor fields fail to commute
due to curvature.

Let Xλ be a vector field. Then, the commutator of covariant derivatives acting on
Xλ gives:

(∇µ∇ν −∇ν∇µ)X
λ = Rλ

ρµνX
ρ

More generally, for a (r, s) tensor field Tα1...αr

β1...βs
, we have:

[∇µ,∇ν ]T
α1...αr

β1...βs
=

r∑
i=1

Rαi
ρµνT

α1...ρ...αr

β1...βs
−

s∑
j=1

Rρ
βjµν

Tα1...αr

β1...ρ...βs

Each index of the tensor contributes a curvature term: upper indices (contravariant)
rotate with +R, while lower indices (covariant) rotate with −R.

This identity is a powerful tool in differential geometry and plays a fundamental role
in deriving various geometric and physical results, including those in General Relativity.

4.3.7 The Levi-Civita Connection

When a manifold M is equipped with a metric g, it is natural to ask whether we can
define a connection that interacts nicely with the geometry that g provides.

[Fundamental Theorem of Riemannian Geometry] Let (M, g) be a smooth manifold
with a metric g. There exists a unique connection ∇ such that:

1. Metric Compatibility: The covariant derivative of the metric vanishes:

∇Xg = 0 for all vector fields X.

This ensures that the inner product between vectors is preserved under parallel
transport.

2. Torsion-Free: The connection is symmetric in the sense that its torsion vanishes:

T (X, Y ) = ∇XY −∇YX − [X, Y ] = 0.

This unique connection is called the Levi-Civita connection.

Coordinate Expression. In a local coordinate system {xµ}, the Levi-Civita connec-
tion is given by the Christoffel symbols:

Γλ
µν =

1

2
gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν)

These symbols determine how vectors are parallel transported and how covariant
derivatives act.

Example 1: Euclidean Space. Consider Rn with the flat metric gµν = δµν . Then all
derivatives ∂ρgµν = 0, so:

Γλ
µν = 0

In this case, the Levi-Civita connection corresponds to the usual directional derivative:
∇XY = X(Y ).
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Example 2: The 2-Sphere S2. The unit sphere in R3 with standard coordinates
(θ, ϕ) has the metric:

ds2 = dθ2 + sin2 θ dϕ2

The non-zero Christoffel symbols are:

Γθ
ϕϕ = − sin θ cos θ, Γϕ

θϕ = Γϕ
ϕθ = cot θ

These define how vectors change as they move along the sphere, and are essential in
computing geodesics (like great circles) and curvature on S2.

Example 3: Minkowski Spacetime. In special relativity, spacetime is modeled as
R4 with metric:

ds2 = −dt2 + dx2 + dy2 + dz2

Here too, all metric components are constant, so the Christoffel symbols vanish and the
Levi-Civita connection is flat.

These examples show how the Levi-Civita connection generalizes ordinary differenti-
ation in flat space to curved geometries, while preserving inner products and being free
of torsion.

4.3.8 The Divergence Theorem

Let M be an n-dimensional oriented Riemannian manifold with boundary ∂M , equipped
with a metric g. Let X be a smooth vector field on M . Then the divergence theorem
relates the integral of the divergence ofX overM to a flux integral ofX over the boundary
∂M :

[Divergence Theorem] Let X be a vector field on M , and let ν denote the outward-
pointing unit normal to the boundary ∂M . Then∫

M

(∇ ·X) volg =

∫
∂M

g(X, ν) vol∂g

Here:

• ∇ ·X is the divergence of the vector field X.

• volg is the volume form on M induced by the metric g.

• vol∂g is the induced volume form on the boundary ∂M .

• g(X, ν) is the inner product of the vector field X with the unit normal ν.

Example (Euclidean R3): In standard R3 with the flat metric, the divergence theorem
becomes the familiar statement:∫

V

(∇ · F⃗ ) d3x =

∫
∂V

F⃗ · n̂ dS

where F⃗ is a vector field, n̂ is the outward unit normal vector on the surface ∂V , and dS
is the surface element.
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4.3.9 The Maxwell Action

The dynamics of the electromagnetic field can be elegantly described using differential
forms. Let F be the electromagnetic field strength 2-form on a Lorentzian manifold
(M, g). That is,

F = dA

where A is the electromagnetic potential 1-form.
The Maxwell action is given by:

S = −1

4

∫
M

F ∧ ⋆F

Here:

• F is the Faraday 2-form (field strength),

• ⋆F is the Hodge dual of F with respect to the Lorentzian metric g,

• F ∧ ⋆F is a top-degree 4-form, which can be integrated over the 4-dimensional
spacetime manifold M .

Variation and Equations of Motion. Varying the action with respect to the poten-
tial 1-form A gives:

δS = −
∫
M

δA ∧ d ⋆ F

Setting this variation to zero for arbitrary δA yields Maxwell’s equations in the absence
of sources:

d ⋆ F = 0

The other half of Maxwell’s equations follows from the definition F = dA, namely:

dF = 0

which is a Bianchi identity.
This formalism highlights the geometric nature of electrodynamics and is particularly

powerful in general relativistic contexts.

4.3.10 Electric and Magnetic Charges & Maxwell’s Equations via Connec-
tions

In the language of differential geometry, the electromagnetic field strength is a 2-form
F ∈ Λ2(M) defined on a Lorentzian manifold (M, g). It is given in terms of the gauge
potential (a 1-form) A as:

F = dA

This automatically implies the **Bianchi identity** (or the absence of magnetic monopoles):

dF = 0

To incorporate electric sources, we introduce the **Hodge star** ⋆ associated with
the metric g. Maxwell’s equations with electric current 3-form J then read:

d ⋆ F = ⋆J

This formulation implies:
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• dF = 0 corresponds to the absence of magnetic monopoles.

• d ⋆F = ⋆J gives the inhomogeneous Maxwell equations (Gauss’s law and Ampère’s
law).

Electric and Magnetic Charges. Given a spacelike hypersurface Σ, the total electric
charge Qe enclosed in a region is:

Qe =

∫
Σ

⋆J =

∫
∂Σ

⋆F

by Stokes’ theorem.
Similarly, if magnetic monopoles existed, a magnetic current 3-form Jm would modify

the Bianchi identity:
dF = ⋆Jm and d ⋆ F = ⋆J

Then the magnetic charge through a spatial 2-sphere S2 would be:

Qm =

∫
S2

F

Maxwell’s Equations via Connection on a U(1)-Bundle. More generally, A can
be viewed as a connection 1-form on a principal U(1)-bundle over M , and the curvature
of this connection is:

F = dA

This viewpoint naturally incorporates gauge invariance:

A 7→ A+ dλ ⇒ F 7→ F

where λ is a scalar function (0-form). The field strength F is gauge-invariant and defines
the physical observable.

This geometric formulation of electromagnetism becomes especially powerful when
discussing topological effects (like Aharonov–Bohm) or generalizing to non-Abelian gauge
theories.

4.3.11 Parallel Transport

Given a connection ∇ on a manifold M , we can define how vectors are ”moved” along
curves in a way that preserves their direction relative to the connection. This process is
called parallel transport.

Let γ : [0, 1] →M be a smooth curve with γ(0) = p and γ(1) = q. A vector field V (t)
along the curve γ is said to be parallel transported if it satisfies:

∇γ̇(t)V (t) = 0

Here, γ̇(t) is the tangent vector to the curve at point γ(t), and ∇γ̇(t) is the covariant
derivative along the curve.

In coordinates, suppose V (t) = V µ(t) ∂
∂xµ and γ̇(t) = dxν

dt
∂

∂xν , then the parallel trans-
port condition becomes a first-order ODE:

dV µ

dt
+ Γµ

νρ

dxν

dt
V ρ = 0
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Interpretation. This equation governs how vector components change as they are
moved along the curve γ, taking into account the curvature and torsion (if present) of
the underlying space through the connection coefficients Γµ

νρ.

Properties.

• Parallel transport preserves the length and angle between vectors if the connection
is compatible with a metric (i.e., ∇g = 0).

• On curved manifolds, parallel transport around a closed loop generally depends on
the path, a manifestation of curvature.

• This path-dependence is quantified by the Riemann curvature tensor.

4.3.12 Geodesics Revisited

A geodesic is a curve γ(τ) on a manifoldM that represents the straightest possible path
with respect to a given connection ∇. Formally, it satisfies the condition:

∇γ̇ γ̇ = 0

where γ̇ = d
dτ

is the tangent vector to the curve. This expresses that the tangent vector
is parallel transported along the curve itself.

In a local coordinate system {xµ}, the geodesic equation becomes:

d2xµ

dτ 2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
= 0

This is a second-order differential equation for the coordinate functions xµ(τ). A curve
satisfying this equation is said to be affinely parameterised.

Angle Preservation under Parallel Transport. Let X = γ̇ be the tangent vector
along a geodesic γ(τ). If Y (τ) is a vector field that is parallel transported along the
geodesic, i.e. ∇XY = 0, then the metric compatibility of the Levi-Civita connection
(∇g = 0) implies:

d

dτ
g(X, Y ) = g(∇XX, Y ) + g(X,∇XY ) = 0

since both ∇XX = 0 and ∇XY = 0 along the geodesic. Therefore, the inner product
g(X, Y ) is constant along the curve:

g(X(τ), Y (τ)) = constant

This result implies that the angle between Y and the tangent vectorX remains unchanged
as they are transported along the geodesic.

Summary. Geodesics are the curves of extremal length (or stationary action) and rep-
resent the paths that particles follow when moving under no external forces in curved
spacetime. The Levi-Civita connection ensures both metric compatibility and torsion-free
transport, making it the natural tool to define geodesics in Riemannian and Lorentzian
geometry.
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4.3.13 Normal Coordinates and the Exponential Map

Given a point p ∈ M on a smooth manifold equipped with a connection ∇, we can
construct a particularly useful coordinate system around p called normal coordinates.
These coordinates make computations near p especially simple.

The construction is based on the exponential map.

Exponential Map. Let TpM denote the tangent space at p. For each vector v ∈ TpM ,
consider the unique geodesic γv(τ) satisfying:

γv(0) = p, γ̇v(0) = v

The exponential map at p is defined as:

expp(v) := γv(1)

This maps a neighborhood of the origin in TpM diffeomorphically onto a neighborhood
of p in M . The exponential map allows us to use vectors in TpM to label points in M
near p.

Normal Coordinates. Using a basis {eµ} of TpM , any vector v ∈ TpM can be written
as v = vµeµ. The coordinates of the point expp(v) are then defined to be xµ = vµ. These
coordinates are called normal coordinates centered at p.

In these coordinates:

• xµ(p) = 0

• gµν(p) = δµν (or ηµν in the Lorentzian case)

• Γρ
µν(p) = 0, i.e., the Christoffel symbols vanish at p

Interpretation. Normal coordinates make the manifold locally flat at p up to first-
order derivatives. Although curvature still exists (i.e., second-order derivatives of the
metric are non-zero), the vanishing of the connection coefficients at p significantly sim-
plifies local calculations, such as Taylor expanding tensor fields or computing curvature
tensors.

4.3.14 Path Dependence: Curvature and Torsion

The connection on a manifold allows us to compare vectors at different points by trans-
porting them along curves. However, in general, this process depends on the path taken.
This failure of path-independence reveals deep geometrical structures of the manifold —
namely, the curvature and torsion.

Parallel Transport and Path Dependence. Let X be a vector field on a manifold
M with a connection ∇. Given a vector Vp at a point p ∈ M , we can define parallel
transport along a curve γ : [0, 1] →M using the condition:

∇γ̇(t)V (t) = 0

If the manifold is flat and torsion-free, the result of parallel transport depends only on the
initial and final points of the curve. In general, however, parallel transporting a vector
around a closed loop may lead to a different vector, indicating the presence of curvature
and/or torsion.
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Curvature

The curvature measures the failure of second covariant derivatives to commute. For a
vector field Z and two vector fields X, Y , the Riemann curvature tensor R is defined as:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

This tensor quantifies how much the vector Z is rotated or changed when transported
around an infinitesimal parallelogram spanned by X and Y .

In coordinates, the components of the Riemann tensor are:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

Torsion and Its Meaning

Torsion measures the failure of the connection to be symmetric in its lower indices. It is
defined as a (1, 2) tensor T given by:

T (X, Y ) = ∇XY −∇YX − [X, Y ]

If T = 0, then the connection is said to be torsion-free. The Levi-Civita connection — the
unique connection compatible with the metric and torsion-free — satisfies this condition.

In a coordinate basis, the torsion tensor components are:

T ρ
µν = Γρ

µν − Γρ
νµ

Interpretation of Torsion. - Curvature tells us that transporting a vector around a
loop results in a rotated vector. - Torsion tells us that two paths that should close (like a
parallelogram) fail to do so because the infinitesimal parallelogram does not close — its
endpoints differ by the torsion vector.

Torsion can be thought of as ”twisting” of the coordinate grid itself. In the presence
of torsion, infinitesimal displacements do not commute:

[∂µ, ∂ν ] ̸= 0

Summary.

• Curvature measures the failure to return to the original vector after parallel trans-
port around a loop.

• Torsion measures the failure of infinitesimal parallelograms to close.

• Both are geometric obstructions to flatness: curvature is about angle change, torsion
about positional offset.

4.3.15 Geodesic Deviation

The geodesic deviation equation describes how nearby geodesics on a manifold deviate
from each other in the presence of curvature. It encodes tidal effects in general relativity
and is governed by the Riemann curvature tensor.
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Let γ(τ) be a geodesic with tangent vector T = d
dτ

= γ̇(τ). Consider a one-parameter
family of nearby geodesics, and define the separation vector field between neighboring
geodesics as J(τ) — known as the Jacobi field.

The geodesic deviation equation is then:

D2Jµ

Dτ 2
+Rµ

νρσT
νJρT σ = 0

or more compactly using covariant derivatives:

∇T∇TJ +R(T, J)T = 0

Interpretation. - Jµ describes the infinitesimal separation between neighboring geodesics.
- The second covariant derivative D2Jµ

Dτ2
measures the relative acceleration between geodesics.

- The curvature termRµ
νρσT

νJρT σ encodes how the curvature of spacetime bends geodesics
toward or away from each other.

Physical Meaning. In general relativity, geodesic deviation corresponds to the pres-
ence of tidal forces. Two nearby freely falling particles in a gravitational field will accel-
erate relative to one another due to spacetime curvature. This is how curvature manifests
in physical measurements.

4.3.16 More on the Riemann Tensor and its Friends

When we lower an index on the Riemann tensor using the metric gµν , we define the fully
covariant Riemann tensor as:

Rσρµν = gσλR
λ
ρµν

This object possesses several important symmetries:

• Antisymmetry in the last two indices:

Rσρµν = −Rσρνµ

• Antisymmetry in the first two indices:

Rσρµν = −Rρσµν

• Symmetry under exchange of index pairs:

Rσρµν = Rµνσρ

• First Bianchi identity (cyclic identity):

Rσ[ρµν] = 0

which expands as
Rσρµν +Rσµνρ +Rσνρµ = 0
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Second Bianchi Identity. The Riemann tensor satisfies a differential identity known
as the second Bianchi identity:

∇[λRσρ]µν = 0

Alternatively, using antisymmetrisation on the last indices:

Rσρ[µν;λ] = 0

These identities play a central role in the structure of general relativity. In particular,
they are instrumental in deriving the Einstein field equations from the Einstein–Hilbert
action.

4.4 Connection 1-Forms and Curvature 2-Forms

4.4.1 Vielbeins

On a smooth n-dimensional manifold M equipped with a metric g, we can introduce an
orthonormal frame of 1-forms {ea}, known as vielbeins (or frame fields), such that the
metric takes the form

g = ηab e
a ⊗ eb

where ηab is the Minkowski (or Euclidean) metric depending on the signature of spacetime.
The vielbeins relate the coordinate basis dxµ to an orthonormal basis via:

ea = eaµ dx
µ and its inverse dxµ = eµa e

a

where eaµ and eµa are inverse matrices.

4.4.2 Connection 1-Forms

To define parallel transport and curvature in the vielbein formalism, we introduce the
connection 1-forms ωa

b, which are Lie-algebra-valued 1-forms encoding how frames
twist and rotate over the manifold. They satisfy the structure equation:

dea + ωa
b ∧ eb = T a

where T a is the torsion 2-form. For the torsion-free (Levi-Civita) connection, this
reduces to the first Cartan structure equation:

dea + ωa
b ∧ eb = 0

The connection 1-forms satisfy the antisymmetry property:

ωab = −ωba with ωab := ηacω
c
b

4.4.3 Curvature 2-Forms

The curvature is captured by the curvature 2-forms Ωa
b, defined via the second Cartan

structure equation:
Ωa

b := dωa
b + ωa

c ∧ ωc
b

These forms encode the Riemann curvature tensor in the frame basis. Specifically, the
Riemann tensor components can be recovered from:

Ωa
b =

1

2
Ra

bcd e
c ∧ ed

Thus, the curvature 2-form expresses the infinitesimal holonomy: how much a vector
rotates after being parallely transported around an infinitesimal parallelogram.
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4.4.4 Summary of Cartan’s Structure Equations

• First structure equation (torsion):

T a = dea + ωa
b ∧ eb

• Second structure equation (curvature):

Ωa
b = dωa

b + ωa
c ∧ ωc

b

These equations form the foundation of the geometric interpretation of gravity in the
vielbein (tetrad) formalism, and are central to formulations like Einstein-Cartan theory
and gauge theories of gravity.

4.5 An Example: The Schwarzschild Metric

One of the most important exact solutions of Einstein’s equations is the Schwarzschild
metric. It describes the spacetime geometry outside a static, spherically symmetric, non-
rotating mass.

In Schwarzschild coordinates (t, r, θ, ϕ), the line element is given by:

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin2 θ dϕ2

Here: - G is the gravitational constant, - M is the mass of the central object, - r is the
radial coordinate, - θ and ϕ are the usual angular coordinates on the sphere.

Key Features

• The coordinate singularity at r = 2GM is the Schwarzschild radius, often de-
noted rs. This defines the event horizon of a black hole.

• The curvature singularity is at r = 0, where tidal forces become infinite.

• In the limit r → ∞, the spacetime becomes asymptotically flat:

ds2 → −dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2)

• The metric is static and spherically symmetric, meaning it has timelike Killing
vector ∂t and rotational symmetry.

• The non-zero Christoffel symbols, Riemann tensor, Ricci tensor, and Einstein tensor
for this metric encode the vacuum nature (Rµν = 0) of the spacetime outside the
mass.

Interpretation

This solution solves the vacuum Einstein equations Rµν = 0, meaning it describes the
geometry of spacetime in a region where no matter is present, but a central mass curves
spacetime.

Important physical consequences:
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• Precession of planetary orbits (e.g., Mercury),

• Gravitational time dilation,

• Light bending near massive objects,

• Black hole physics, including event horizons and Hawking radiation (semi-classically).

4.6 The Relation to Yang–Mills Theory

There is a striking formal similarity between general relativity and Yang–Mills theory
when viewed through the lens of differential geometry and gauge theory.

In general relativity, the geometry of spacetime is encoded in the spin connection ωa
b,

and curvature is described by the curvature 2-form:

Ωa
b = dωa

b + ωa
c ∧ ωc

b

This is structurally analogous to the field strength F in Yang–Mills theory:

F = dA+ A ∧ A

where A is the Lie-algebra-valued connection (gauge potential) for some internal symme-
try group.

Comparison Table

General Relativity Yang–Mills Theory
Gauge Group SO(n) or SO(1, n− 1) Compact Lie group (e.g., SU(N))
Connection Spin connection ωa

b Gauge field Aa

Curvature Ωa
b Field strength F a

Bianchi Identity DΩa
b = 0 DF a = 0

Action Einstein–Hilbert:
∫
R ⋆ 1 Yang–Mills:

∫
Tr(F ∧ ⋆F )

This analogy reveals gravity as a kind of gauge theory, though with important differ-
ences: the ”gauge group” in gravity acts on the tangent bundle (spacetime itself), while
in Yang–Mills it acts on an internal vector space.

Remarks

• In gravity, the vielbein ea plays a dual role: it encodes both the metric and allows
coupling to spinors.

• In contrast to Yang–Mills theory, the spin connection in gravity is not an inde-
pendent field in the metric formalism—it is determined by ea via the torsion-free
condition.
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5 Einstein’s Equations

It is now time to do some physics. The force of gravity is mediated by a gravitational
field. The glory of general relativity is that this field is identified with a metric gµν(x) on
a four-dimensional Lorentzian manifold that we call spacetime.

This metric is not fixed; it is, like all other fields in nature, a dynamical object. This
means that there are rules which govern how this field evolves in time. The purpose of
this section is to explore these rules and some of their consequences.

We will start by understanding the dynamics of the gravitational field in the absence
of any matter. We will then turn to understand how the gravitational field responds to
matter — or, more precisely, to energy and momentum — in Section 4.5.

5.1 The Einstein-Hilbert Action

All our fundamental theories of physics are described by action principles. Gravity is
no different. Furthermore, the straight-jacket of differential geometry places enormous
restrictions on the kind of action that we can write down. These restrictions ensure that
the action is something intrinsic to the metric itself, rather than depending on any choice
of coordinates.

Spacetime is a manifold M , equipped with a metric of Lorentzian signature. An
action is an integral over M . We know from Section 2.4.4 that we need a volume form
to integrate over a manifold. Happily, as we have seen, the metric provides a canonical
volume form, which we can multiply by any scalar quantity. Given that we only have the
metric to play with, the simplest such (non-trivial) quantity is the Ricci scalar R. This
motivates the wonderfully concise action

S =

∫
M

d4x
√
−g R , (19)

known as the Einstein–Hilbert action. Note that the minus sign under the square root
appears because we are working in a Lorentzian spacetime, where the metric has a single
negative eigenvalue, making its determinant g = det gµν negative.

As a quick sanity check, recall that the Ricci tensor takes the schematic form

R ∼ ∂Γ + ΓΓ ,

while the Levi-Civita connection itself is

Γ ∼ ∂g .

This means that the Einstein–Hilbert action is second order in derivatives, just like most
other fundamental action principles in physics.

5.2 Varying the Einstein–Hilbert Action

We now vary the Einstein–Hilbert action (19) to obtain the Euler–Lagrange equations.
We consider an infinitesimal shift in the metric:

gµν(x) → gµν(x) + δgµν(x) .
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Writing the Ricci scalar as R = gµνRµν , the variation of the action is

δS =

∫
M

d4x
[
δ(
√
−g)gµνRµν︸ ︷︷ ︸

(a)

+
√
−g(δgµν)Rµν︸ ︷︷ ︸

(b)

+
√
−ggµνδRµν︸ ︷︷ ︸

(c)

]
.

It is convenient to work with variations of the inverse metric. The relation between
δgµν and δgµν is

gρµg
µν = δ ν

ρ ⇒ δgµν = −gµρgνσδgρσ .

We now compute the first term.

Claim. The variation of
√
−g is

δ
√
−g = −1

2

√
−ggµνδgµν .

This allows us to rewrite the first term as

δ(
√
−g)gµνRµν = −1

2

√
−ggµνgµνRµν δg

µν = −1
2

√
−gR gµνδgµν .

The second term is already in the desired form:

√
−g(δgµν)Rµν =

√
−gRµνδg

µν .

The final term,
√
−ggµνδRµν , involves the variation of the Ricci tensor and can be

expressed as a total derivative:

√
−ggµνδRµν =

√
−g∇ρ

(
gµνδΓρ

µν − gµρδΓν
µν

)
.

This term gives only a boundary contribution, which we can discard if we assume δgµν = 0
on the boundary of M .

Putting this together, the total variation is

δS =

∫
M

d4x
√
−g
[
Rµν − 1

2
Rgµν

]
δgµν .

Requiring δS = 0 for arbitrary δgµν gives the vacuum Einstein field equations:

Rµν − 1
2
Rgµν = 0 .

Claim. The variation of the Ricci tensor is a total derivative:

δRµν = ∇ρδΓ
ρ
µν −∇νδΓ

ρ
µρ ,

with
δΓρ

µν = 1
2
gρσ
(
∇µδgσν +∇νδgσµ −∇σδgµν

)
.

This confirms that the term
√
−ggµνδRµν is a total derivative, yielding only a bound-

ary contribution upon integration.

The upshot of these calculations is that

gµνδRµν = ∇µX
µ with Xµ = gρνδΓµ

ρν − gµνδΓρ
νρ.
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Then, the variation of the action (19) can be expressed as

δS =

∫
M

d4x
√
−g
[
(Rµν − 1

2
Rgµν) δg

µν +∇µX
µ
]
.

The final term is a total derivative and, by the divergence theorem (see Section 3.2.4),
can be ignored when δgµν = 0 on the boundary. Hence, the Euler–Lagrange equations
are

Rµν − 1
2
Rgµν = 0 ,

with Gµν := Rµν − 1
2
Rgµν the Einstein tensor. These are the Einstein field equations in

vacuum.
Taking the trace of this expression gives R = 0, implying that the vacuum equations

reduce to
Rµν = 0 ,

i.e., the metric is Ricci–flat.

An Aside on Dimensional Analysis

In units where c = h̄ = 1, the metric gµν is dimensionless, and the Ricci scalar R has
units of [length−2]. The Einstein–Hilbert action

S =

∫
d4x

√
−gR

is then of order [length2]. To match the units of a physical action, one introduces Newton’s
constant G, yielding

S =
1

16πG

∫
d4x

√
−gR ,

with G having units [length2]. In this form, the total action is dimensionless.

The Cosmological Constant

One can generalize the Einstein–Hilbert action by adding a constant term:

S =
1

16πG

∫
d4x

√
−g(R− 2Λ) ,

where Λ is the cosmological constant. The resulting field equations are

Gµν + Λgµν = 8πGTµν ,

with Λgµν acting like a vacuum energy density.

Higher–Derivative Terms

The Einstein–Hilbert action contains terms with at most second derivatives of the metric.
In more general theories of gravity, one can consider higher–order corrections, such as

Lhigh-deriv. =
√
−g
[
R + αR2 + βRµνR

µν + . . .
]
.

These lead to fourth–order field equations and arise in effective theories of gravity and
quantum corrections.
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Diffeomorphisms Revisited

The action of General Relativity is diffeomorphism invariant: for any smooth coordinate
map xµ → x′µ(x), the form of the action and the field equations remain unchanged. This
is the formal statement that General Relativity is a covariant theory, making the metric
a truly geometric, coordinate–independent object.

The Einstein Equations with Matter

So far, we have considered the dynamics of the metric gµν in the absence of matter,
yielding the vacuum Einstein equations:

Gµν := Rµν − 1
2
Rgµν = 0 .

To describe how matter influences the geometry of spacetime, we add a matter action

Smatter[g, ψ,A, . . . ] =

∫
d4x

√
−gLmatter(g, ψ,A, . . . ) ,

where ψ,A, . . . denote generic matter fields (scalars, spinors, gauge fields, etc.).
Varying the matter action with respect to the metric defines the energy–momentum

tensor :
Tµν := − 2√

−g
δSmatter

δgµν
.

Combining the matter and gravity variations, the total action

Stot =
1

16πG

∫
d4x

√
−gR + Smatter

yields the Einstein field equations with matter :

Gµν = 8πGTµν .

These are the fundamental equations of general relativity, capturing the interplay
between matter, energy, and the geometry of spacetime.

Examples of the Energy–Momentum Tensor

The energy–momentum tensor Tµν encodes the density and flux of energy and momentum
for any matter present. Its form depends on the matter fields in question:

• Scalar Field: For a scalar field ϕ,

Tµν = ∇µϕ∇νϕ− gµν

[
1
2
gρσ∇ρϕ∇σϕ+ V (ϕ)

]
.

• Electromagnetic Field: For the Maxwell field Fµν ,

Tµν = 1
4π

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ
)
.

• Perfect Fluid: For a fluid with rest–frame energy density ρ, pressure p, and
four–velocity uµ,

Tµν = (ρ+ p)uµuν + p gµν .

More generally, one can consider any matter content as arising from a suitable matter
action yielding an associated Tµν .
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The Slippery Business of Energy Conservation

In general relativity, energy conservation is a more nuanced concept than in Newtonian
mechanics. In special relativity, we have

∂µT
µν = 0 ,

expressing the local conservation of energy and momentum. However, in curved spacetime
this generalizes to

∇µT
µν = 0 ,

which captures the fact that matter and energy evolve covariantly with the geometry of
spacetime.

This covariant conservation law is built into the Einstein field equations via the
Bianchi identities:

∇µG
µν = 0 ⇒ ∇µT

µν = 0 .

Yet, this is not a global conservation statement: in a curved, dynamic spacetime, one gen-
erally cannot define a global, coordinate–independent total energy for the gravitational
field itself. The energy of matter is well–defined at each point via T µν , but the energy
of gravity is intrinsically tied to the geometry and does not have a localized, tensorial
description.

This is one of the profound conceptual shifts introduced by general relativity — energy
and momentum are still conserved, but only in the covariant, local sense. Globally, in
an expanding universe or highly dynamical spacetime, the traditional notions of energy
conservation must be treated with care.

6 The Schwarzschild Solution

The simplest and most important solution of the vacuum Einstein equations,

Rµν = 0 ,

is the Schwarzschild solution. It describes the spacetime geometry surrounding a static,
spherically symmetric, uncharged massive object.

Assuming spherical symmetry and staticity, one can write the metric ansatz as

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2 θ dφ2) .

In vacuum (Rµν = 0), one finds

e2Φ(r) = e−2Λ(r) = 1− 2GM

r
,

and the Schwarzschild metric becomes

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) .

Interpretation

Here,M is the mass of the central object. The surface r = 2GM is called the Schwarzschild
event horizon. It marks the point of no return for any infalling matter or light. As r → ∞,
the metric approaches the flat spacetime of special relativity, makingM the total (ADM)
mass of the spacetime.
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Physical Significance

The Schwarzschild solution was the first exact solution of the Einstein field equations and
is a cornerstone of general relativity. It describes:

• The spacetime around stars and planets (for r ≫ 2GM).

• The geometry of black holes (r ≤ 2GM).

• The bending of light and the precession of planetary orbits.

With this solution, we gain the foundation for understanding black holes, gravitational
lensing, and relativistic orbits — making it one of the central results of general relativity.

Komar Mass of the Schwarzschild Black Hole

The Schwarzschild metric,

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) ,

reduces for large r to the Newtonian potential Φ(r) = −GM
r
, confirming its interpretation

as the gravitational field of a point mass M at the origin.
We can compute the total mass M of the Schwarzschild spacetime using the Komar

integral. This approach exploits the timelike Killing vector K = ∂t, with its associated
one–form

Kµdx
µ = g00dt = −

(
1− 2GM

r

)
dt .

From this, we construct the two–form

F = dK = −2GM
r2

dr ∧ dt ,

which has precisely the 1/r2 behavior reminiscent of an electric field. According to the
Komar construction, the total mass enclosed within any sphere S2 of radius r > 2GM is

MKomar = − 1
8πG

∫
S2

⋆dK .

Evaluating the integral gives
MKomar =M ,

and this result is independent of the sphere’s radius, just as the total charge in Maxwell
theory is independent of the surface used for its measurement.

Interestingly, this formalism mimics Maxwell’s theory, yielding an effective “charge”
MKomar. Since d ⋆ F = 0 is satisfied in vacuum, one might expect MKomar = 0. However,
the “charge” is sourced by the singularity at r = 0, making the Schwarzschild solution
akin to a point charge located at the origin.

Although the metric is a valid solution of the Einstein equations for any M , only
M ≥ 0 gives a physically sensible spacetime. The M = 0 case is just flat Minkowski
space, and the M < 0 solution contains a naked singularity with pathologies that make
it physically unacceptable.
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Birkhoff’s Theorem

An important result in General Relativity is Birkhoff’s Theorem. It states that any
spherically symmetric solution of the vacuum Einstein equations,

Rµν = 0 ,

must be static and asymptotically flat, and is therefore uniquely described by the Schwarzschild
metric.

More generally:

• Even if the matter distribution is spherically symmetric but dynamical (such as a
pulsating star), the exterior spacetime remains Schwarzschild.

• In other words, a spherically symmetric vacuum solution has no monopole gravita-
tional radiation. This means that changes within the spherically symmetric matter
do not affect the exterior metric, as long as the matter remains spherically sym-
metric.

Birkhoff’s Theorem guarantees that Schwarzschild is the unique vacuum solution for
any spherically symmetric configuration, making it a cornerstone for understanding black
holes and their dynamics.

Coordinate Singularity vs. True Singularity

The Schwarzschild metric appears to “go bad” at two special radii:

r = 2GM and r = 0 .

At r = 2GM , the metric component gtt → 0 and grr → ∞. However, this is merely a
coordinate singularity : it can be removed by choosing a different coordinate chart (e.g.,
Kruskal–Szekeres coordinates). In this sense, r = 2GM is a regular surface — the event
horizon of the black hole.

In contrast, at r = 0, curvature invariants such as the Kretschmann scalar

RµνρσR
µνρσ → ∞

diverge, indicating a genuine physical singularity. Here the theory of general relativity
itself breaks down. To make sense of physics in this regime, one must ultimately turn to
a quantum theory of spacetime.

The Near Horizon Limit: Rindler Space

Near the Schwarzschild horizon r = 2GM , the geometry of spacetime simplifies dramat-
ically. Let us set

r = 2GM + ρ ,

with ρ≪ 2GM . The Schwarzschild metric then becomes

ds2 = −
(
1− 2GM

2GM+ρ

)
dt2 +

(
1− 2GM

2GM+ρ

)−1

dr2 + (2GM + ρ)2(dθ2 + sin2 θ dφ2).

To leading order in ρ,

ds2 ≈ − ρ
2GM

dt2 + 2GM
ρ
dρ2 + (2GM)2(dθ2 + sin2 θ dφ2).
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Introduce the proper radial coordinate

χ = 2
√
GMρ ,

such that
ds2 ≈ − χ2

16G2M2dt
2 + dχ2 + (2GM)2(dθ2 + sin2 θ dφ2).

The t− χ part of the metric is precisely the Rindler metric,

ds2Rindler = −κ2χ2dt2 + dχ2 ,

with surface gravity
κ = 1

4GM
.

This shows that near the horizon, the Schwarzschild black hole is well–approximated by
a patch of Rindler spacetime, capturing the physics of a uniformly accelerated observer.
In this regime, many results, including the Unruh effect and the thermal nature of black
hole horizons, find a natural and geometrically elegant description.

7 Simulation of Schwarzschild Orbits

To complement the theoretical discussion of general relativity, we developed simulations of
particle and photon orbits around a Schwarzschild black hole. These simulations visualize
how the curvature of spacetime governs the geodesic motion of objects.

2D Orbital Dynamics in Schwarzschild Geometry

To simulate particle orbits around a Schwarzschild black hole in two dimensions, we begin
by analyzing the effective potential and deriving the corresponding orbital equations.

Effective Potential

The radial motion of a test particle in Schwarzschild spacetime can be described by the
conservation of energy: (

dr

dτ

)2

+ Veff(r) = E2

where E is the conserved specific energy of the particle, and Veff(r) is the effective poten-
tial, given by:

Veff(r) =

(
1− 2M

r

)(
ϵ+

L2

r2

)
Here, M is the mass of the black hole, L is the conserved angular momentum, and ϵ = 1
for a massive particle and ϵ = 0 for a photon.

Derivative of the Effective Potential

To find the radial acceleration, we differentiate the effective potential with respect to r:

dVeff
dr

=
2M

r2

(
ϵ+

L2

r2

)
−
(
1− 2M

r

)
· 2L

2

r3
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Conversion to Angular Equation

To express the motion in terms of the angular coordinate ϕ, we use conservation of angular
momentum:

dϕ

dτ
=
L

r2
⇒ dr

dτ
=
L

r2
· dr
dϕ

Squaring both sides: (
dr

dτ

)2

=

(
L

r2

)2(
dr

dϕ

)2

Substituting into the energy equation:(
dr

dϕ

)2

=
r4

L2

(
E2 − Veff(r)

)
Differentiating with respect to ϕ:

2
dr

dϕ
· d

2r

dϕ2
=

d

dϕ

[
r4

L2

(
E2 − Veff(r)

)]

=
1

L2

[
4r3

dr

dϕ
(E2 − Veff)− r4

dVeff
dr

dr

dϕ

]
Canceling dr

dϕ
:

d2r

dϕ2
=

1

2L2

[
4r3(E2 − Veff)− r4

dVeff
dr

]
In the case of circular orbits or near turning points where E2 ≈ Veff, the first term

vanishes:
d2r

dϕ2
= −1

2
· dVeff
dr

· r
4

L2

Radial Velocity

We can also compute the radial velocity from the energy equation:

dr

dτ
=
√
E2 − Veff(r)

This helps us determine whether the particle is moving inward or outward at a given
point in the orbit.

Significance of the Equation

The final angular equation allows us to numerically integrate the orbital path of a particle
around a Schwarzschild black hole, using the second-order ODE in terms of ϕ. This
approach is particularly useful for visualizing precessing orbits and photon trajectories in
a 2D plane.
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Sample Simulation Output

Figure 3: Trajectory of a massive particle orbiting a Schwarzschild black hole.

Parameters Used:

• M = 0.5 (Mass of black hole)

• L = 1.8867 (Angular momentum)

• r0 = 5 (Initial radius)

• e = 1 (Massive particle)

• E = 0.9560 (Energy)

• inward = True (Initial direction of radial velocity)

7.1 3D Visualisation Using Manim

To better capture the curvature of spacetime, we also implemented a 3D animated version
of the orbits using the manim engine. This version presents a rotating spatial view of the
orbit, rendered over a Schwarzschild curvature surface for aesthetic clarity.
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figure3D rendered
orbit around a Schwarzschild black hole using Manim with the same paramaters as the
previous ones.

Some more simulations-
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7.2 Photon vs Massive Particle Geodesics

Our code includes a toggle to simulate either photons (ϵ = 0) or massive particles (ϵ = 1),
affecting the structure of the effective potential:

Veff(r) =

(
1− 2M

r

)(
ϵ+

L2

r2

)
The orbits reflect general relativistic effects such as:

• Light bending

• Photon sphere at r = 3M

• Perihelion precession for near-circular orbits (e.g., Mercury)

7.3 Code Repository

All simulation code and instructions are available at: [Google Drive Link]

It contains:

Code and Simulation Files

The following Python files are used for visualizing the Schwarzschild orbits:

• visualisation 2d.py — Matplotlib version for 2D trajectory simulation.

• visualisation 3d.py — Manim 3D scene for animated rendering of orbits.

• Sample rendered videos and figures are also included.

How to Run the Simulations:

• For the 2D version:
python visualisation 2d.py

• For the 3D version using Manim:
manim -pql visualisation 3d.py SchwarzschildOrbit
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