
KRITTIKA SUMMER PROJECTS 2024

Searching for Periodicity in AGN
light curves

Fida Fathima T P, Haemanth Ruban, Samarth Majumdar, Sameer Patil,
Avinash Kumar Paladi, and Kenil Ajudiya





KRITTIKA SUMMER PROJECTS 2024

Searching for Periodicity
in AGN light curves

Fida Fathima T P1, Haemanth Ruban2, Samarth Majumdar3, Sameer Patil4,
Avinash Kumar Paladi5,6, and Kenil Ajudiya5,6

1Jawaharlal Nehru University, New Delhi

2IIT Hyderabad

3University of Hyderabad

4IIT BHU, Varanasi
5Indian Institute of Science, Bangalore

6Mentors for this project

Copyright © 2024 Krittika IITB
PUBLISHED BY KRITTIKA: THE ASTRONOMY CLUB OF IIT BOMBAY
GITHUB.COM/KRITTIKAIITB
First Release, August 2024

https://github.com/krittikaiitb


Abstract

Supermassive black holes (SMBHs) are the largest type of black hole with masses
ranging from thousands to billions of times the mass of the sun (M⊙). AGN are
compact regions at the centres of galaxies powered by SMBHs which emit large
amounts of electromagnetic radiation often outshining the light of billions of stars.
Quasars are a subclass of AGN, being some of the brightest objects in the universe,
and are some of the farthest objects from the earth, with the nearest being millions
of lightyears away.

Supermassive black hole binaries (SMBHBs) are systems of two SMBHs at centres of
galaxies orbiting each other. They are said to be products of galaxy mergers, and
emit gravitational waves of very low frequencies which prevent current gravita-
tional wave detectors from detecting them.

In this study, we focus on simulating and studying the light curves of AGN as
observed by time-domain photometric surveys. Specifically, we try to find periodic-
ities in light curve data, which may indicate the presence of SMBHBs. We simulate
light curves of current and future surveys such as the LSST and CRTS, over large
characteristic timescales ranging over several years using a Damped Random
Walk (DRW) model.

Using a mix of simulated and real data, we test out four methods of finding peri-
odicities in the light curves - the Generalised Lomb-Scargle Periodogram (GLSP),
Weighted Wavelet Z - Transform (WWZ Transform), REDFIT, and Bayesian Inference.
Each of these methods have their advantages and disadvantages as we will see
later in the study.
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1. Introduction

1.1 Super Massive Black Holes

Super Massive Black Hole (SMBH) is the largest type of black hole, with the mass of
more than hundred thousand mass of the sun (M⊙). Nearly every large galaxy has
a supermassive black hole at its centre. Supermassive black holes formed in the
early universe and have evolved together with galaxies since then. Exactly how
such black holes formed is unknown, but their growth must have been rapid, since
supermassive black holes have been observed in objects that formed about one
billion years after the big bang. Quasars are extremely bright and distant objects in
the universe, and their energy source was a mystery. Early theories proposed that
supermassive black holes (SMBHs) were the powerhouses behind quasars. These
SMBHs can convert a significant portion of the mass they accrete into energy,
leading to the immense luminosity observed in quasars.

1.2 Active Galactic Nuclei

Active Galactic Nuclei (AGN) are extraordinary astronomical phenomena charac-
terized by exceptionally luminous galactic cores. These intense energy sources are
powered by supermassive black holes (SMBHs) at the centers of galaxies, which
accrete surrounding matter. As material falls into the SMBH, it releases enormous
amounts of energy, making AGN visible across vast cosmic distances. Some AGN
produce relativistic jets, streams of particles accelerated to near-light speeds,
which can extend far beyond their host galaxies. These jets play a crucial role in
shaping galactic environments and intergalactic space. Quasars, a type of AGN,
are among the most luminous objects in the universe. Typically found in the early
cosmos, quasars are believed to be powered by young, rapidly accreting SMBHs.
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Their extreme brightness allows them to outshine their entire host galaxies, making
them valuable probes of the distant universe.

1.3 Super Massive Black Hole Binaries

A supermassive black hole binary (SMBHB) is a system consisting of two black holes
in close orbit around each other, believed to form during galaxy mergers. The
life cycle of an SMBHB can be divided into three main stages: inspiral, merger,
and ringdown. These stages provide a comprehensive picture of the evolution of
supermassive black hole binaries, from their formation to their final stable state,
marked by the emission of gravitational waves detectable on Earth.

Figure 1.1: A cartoon of the three stages of black-hole coalescence

1.3.1 Inspiral

The first stage, called the inspiral, involves a gradually shrinking orbit. This stage
takes a very long time because the gravitational waves emitted are very weak
when the black holes are distant from each other. In addition to the orbit shrinking
due to the emission of gravitational waves, extra angular momentum may be lost
due to interactions with other matter present, such as stars. As the black holes’
orbit shrinks, their speed increases, leading to stronger gravitational wave emission.
When the black holes are close, the gravitational waves cause the orbit to shrink
rapidly.

1.3.2 Merger

The second stage is the merger, characterized by a plunging orbit where the two
black holes meet and merge. Gravitational wave emission peaks during this time.
The merger is a brief but highly energetic event, producing a burst of gravitational
waves detectable by observatories.

1.3.3 Ringdown

The third stage is the ringdown, immediately following the merger. During the
ringdown, the newly formed black hole settles into a stable state, emitting grav-
itational waves as it "rings" like a bell. This ringing is damped over time by the
emission of gravitational waves. The ringdown phase starts when the black holes
approach each other within the photon sphere. In this region, most of the emitted
gravitational waves go towards the event horizon, and the amplitude of those
escaping reduces. Remotely detected gravitational waves have an oscillation
with a fast-reducing amplitude, as echoes of the merger event result from tighter
and tighter spirals around the resulting black hole.
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1.4 Observational Techniques

Detecting supermassive black hole binaries (SMBHBs) involves various observational
techniques across multiple wavelengths and methods. Here are the primary
detection methods.

1.4.1 Gravitational Wave Observatories

Space-Based Detectors: Future missions like LISA (Laser Interferometer Space
Antenna) will be specifically designed to detect low-frequency gravitational waves
emitted by SMBHBs. LISA will be more sensitive to the inspiral and merger phases of
SMBHBs at cosmological distances.

Pulsar Timing Arrays (PTAs): PTAs use highly precise measurements of pulsar signals
to detect the influence of gravitational waves passing between the pulsars and
Earth. These gravitational waves can be generated by SMBHBs. Current PTA
projects include Indian Pulsar Timing Array(InPTA) NANOGrav (North American
Nanohertz Observatory for Gravitational Waves), the European Pulsar Timing Array
(EPTA), Chinese Pulsar Timing Array(CPTA) and Parkes Pulsar Timing Array (PPTA).

1.4.2 Electromagnetic Observations

X-ray Observations: SMBHBs can emit strong X-rays, particularly if they are accret-
ing gas. The Advanced X-ray Imaging Satellite (AXIS) is a Probe-class concept
that will build on the legacy of the Chandra X-ray Observatory by providing low-
background, arcsecond-resolution imaging in the 0.3-10 keV band across a 450
arcminute field of view, with an order of magnitude improvement in sensitivity
(Reynolds et al. 2023[14]). XMM-Newton can also detect these emissions.

Radio Observations: Radio telescopes can identify periodic variations in the emis-
sions from active galactic nuclei (AGN) which might indicate the presence of an
SMBHB. Arrays like the Very Large Array (VLA) and the Atacama Large Millimeter/-
submillimeter Array (ALMA) are instrumental in such observations.

Optical and Infrared Observations: Variability in the light from quasars and active
galactic nuclei (AGNs), observed by space-based and ground-based telescopes,
can suggest the presence of SMBHBs. Periodic changes in the luminosity or spectral
lines can be key indicators. The presence of SMBHBs can be inferred by analyzing
Doppler shifts in the spectral lines of AGNs or quasars. Additionally, the periodic
variability in the light curves of these objects, caused by the orbital motion of the
binary, serves as a telltale sign of SMBHBs.

1.5 Objectives

The main objectives of this paper are to find methods to effectively identify SMBHB
candidates using time-domain photometric data available now and to simplify
and streamline this process for future surveys as well. Trying to also find the best
way simulate data that accurately mimics real data we may collect in the future,
we attempt to understand the benefits and shortcomings of methods being tested
in this project to understand what works best.



2. Methods

2.1 Simulating Data

In this paper, we have aimed to first simulate light curve data of future and
current photometric time-domain surveys to test out the various methods of finding
periodicity.

2.1.1 Damped Random Walk
To simulate light curves of quasars, we use a method of modelling the time variabil-
ity of quasars as a stochastic process between two points in time. This process is a
Damped Random Walk (specifically an Ornstein-Uhlenbeck process), (MacLeod
et al. 2010[7]; Kelly et al. 2009[2]; Zu et al. 2013[13]; Kozlowski et al. 2010[4]).
To simulate light curves using the damped random walk model, we use the PSD
(Power Spectral Density) function given by Zu et al. 2013[13];

P( f ) =
4σ2τ

1+(2πτ f )2 (2.1)

where σ2 is the variance of the light curve data, τ is a characteristic DRW time-
scale, and f is the Fourier space frequency. Using the prescription given by Timmer
and Koenig (1995)[10] and following the methods of Witt et al. (2022)[11] we take
the inverse Fourier transform of the PSD and simulate the data. We have tried
to simulate data of current and upcoming surveys like Legacy Survey of Space
and Time (LSST) by the upcoming Vera C. Rubin Observatory and the Catalina
Real-time Transient Survey (CRTS). Using parameters of different surveys such as
the baseline, seasonal gap, cadence, and cadence deviation, we can generate
data that mimics the data of each survey. These survey parameters can be added
to the program in such a way that in the future, any surveys that might need to be
added can be done with ease. Factors such as σ2 and τ are also taken randomly
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from set ranges to get best possible simulations. For τ , we follow Koslowski (2017[5])
and Witt (2022[11]) which takes values in the range τ = [10-3T, 15T], where T is the
observation baseline. As for sigma we take values from log-uniform distribution
ranging from [-1.60, -0.25] (Witt et al. 2022[11], MacLeod et al. 2010[7]).

Figure 2.1: Simulated DRW Light Curve using proposed LSST parameters

Other than this method we also used the astroML python package which has
a function generate_damped_RW, which also produced results similar to the inverse
Fourier transform method with minor changes such as tweaks in the PSD function.

2.1.2 Injecting a sinusoid
To simulate light curves that include SMBHB signals, we inject a sinusoid into the
DRW signal (Witt et al. 2022[11]). Adding photometric errors and random gaussian
errors to make it as realistic as possible, we get light curves without SMBHB signals
(Figure 2.1), as well as with SMBHB signals (Figure 2.2). As for the parameters of the
sinusoid, we have the period P, amplitude A, and phase φ . Given by,

x(t) = Asin
[(

2π

P
(t − t0)

)
+φ

]
(2.2)

where t0 is a reference time. Range of period of the sinusoid is defined by the
parameters of the LSST, which is 30 days to 10 years, so that at least one cycle is
completed when using LSST parameters (WItt et al. 2022[11]). The phase as well as
amplitude are also taken from ranges corresponding to Witt (2022[11]) as [0, 2π]
and [0.05, 0.5] respectively.

Figure 2.2: Simulated DRW Light Curve with Injected Sinusoid using proposed LSST parameters

2.2 Analysis

In this section, we analyze the data we previously simulated. By analyzing it, we
identify the periodicity of the quasars. We employ three different methods to
determine this periodicity. The three methods we use here are,
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Figure 2.3: Simulated DRW Light Curve with Injected Sinusoid using CRTS parameters

2.2.1 Generalized Lomb-Scargle Periodogram
The Lomb-Scargle periodogram (LSP) method iteratively fits an unevenly sampled
light curve with sinusoids of various frequencies, generating a periodogram based
on the goodness of fit (Lomb 1976[6]; Scargle 1982[8]). The Generalized Lomb-
Scargle Periodogram (GLSP) is improved from the classical LSP by considering the
errors in flux measurements within the light curve. Additionally, the GLSP uses a
fitting function that includes both a sinusoid and a constant term (Zechmeister
& Kürster 2009[12]). Here we use GLSP code from the PYASTRONOMY python
package (Czesla et al.2019[1]). This code also estimates the significances of
the periodogram peaks in terms of the False Alarm Probability (FAP), considering
an underlying white-noise periodogram. The GLSP is not effective at detecting
transient periodicities in a light curve because the aperiodic components diminish
the quality of the sinusoid fit. However, it is highly efficient for identifying persistent
periodicities.

2.2.2 Weighted wavelet Z-transform
The weighted wavelet Z-transform (WWZ) method is a crucial tool for studying tran-
sient periodicities. It can detect the power of any dominant periodic modulation
and its corresponding time span in the light curve. This method creates a WWZ
map by convolving the light curve with a time- and frequency-dependent kernel,
then decomposing the data into time and frequency domains. We convolved the
light curve with the Morlet kernel (Grossmann & Morlet 1984) given as

f [ω(t − τ)] = exp[iω(t − τ)− cω
2(t − τ)2] (2.3)

The WWZ map is given as

W [ω,τ;x(t)] = ω
1/2

∫
x(t) f ∗[ω(t − τ)]dt (2.4)

where x(t) is the light curve, f ∗ is the complex conjugate of the Morlet kernel f , ω is
the frequency, and τ is the time-shift parameter. Also WWZ transform is useful when
the signal frequency is changing in time.

2.2.3 REDFIT
The REDFIT software is a FORTRAN 90 program. This program fits a firstorder autore-
gressive (AR1) process, to an unevenly spaced time series and has the advantage
of avoiding any interpolation in the time domain (Schulz & Mudelsee 2002[9]).
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The fitted AR1 model is then transformed from the time domain to the frequency
domain to estimate the underlying red-noise spectrum, which characterizes the
variability of most blazar emissions. Comparing the spectrum of the actual time
series with the estimated red-noise spectrum allows for testing the hypothesis that
the origin of the light curve is an AR1 process. By comparing the periodogram of
the original time series with those of the synthetic series, the method calculates
significance levels for each peak in the periodogram of the original data. Peaks
that exceed the significance threshold are considered likely to represent true
periodic signals rather than noise. REDFIT is specifically designed to account for
red noise, making it more effective than traditional methods (like the Lomb-Scargle
periodogram) in distinguishing true periodic signals from noise in datasets where
red noise is present.

2.2.4 Bayesian Inference
We use Bayesian model selection to get the AGN light curves. The Bayes’ theorem
states that

P(θ | d,H) =
L(d | θ ,H)P(θ | H)

Z(d | H)
(2.5)

The posterior probability distribution P(θ | d,H) is the probability of the parameters
θ given the hypothesis H, before considering the data d. It reflects our prior belief
about the parameters. The likelihood L(d | θ ,H) is the probability of the data d
given the parameters θ and the hypothesis H. It reflects how likely the observed
data is under different parameter values. The likelihood function for the quasar
light curves is given by

L(d | θ n,θ s,m) =
1√

(2π)N |C|
exp

[
−1

2
(d −m− s)TC−1(d −m− s)

]
(2.6)

The prior Probability P(θ | H) is the probability of the parameters θ given the
hypothesis H, before considering the data d. It reflects our prior belief about the
parameters. The Bayesian evidence or marginal likelihood for the hypothesis H is
given by
In this work, we utilize measurements of optical magnitudes, represented as the
logarithmic light curve. The data d is modeled as

d = n+m+ s (2.7)

where n is the noise vector, which encompasses measurement uncertainties and
additional intrinsic stochastic variability from the quasar. m is a constant vector
with identical entries, representing the mean magnitude and any constant offset,
such as the constant level of contamination from the host galaxy light. The signal
vector s is given by

s(t) = Asin(2π f0t +φ) (2.8)

where A is the amplitude, f0 is the frequency of the sinusoidal signal, and φ is the
phase [17]



3. Results

3.1 Observational Data

We analyzed the lightcurve of object PG1302. We used CRTS survey data from
Zhu [18]. The observations span a period of 2946 days. There are 290 observations
during this period. This means average cadence of about 10 days. The magnitude
of the object varies between 14.79 and 15.19. A mean photometric error of 0.06 is
associated with the observations. The graph of magnitude is plotted against time
in 3.1.

Figure 3.1: PG1302: Observed Lightcurve
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3.2 Lomb Scargle Periodogram

We created a Generalized Lomb Scargle Periodogram using the Timing module
of PyAstronomy [[16]]. We used the default options of the module for the analysis.
Summary of the analysis is as follows:

Table 3.1: Results of Generalized Lomb Scargle Analysis

Inputs

Number of input points 290
Weighted mean of magnitude 14.9804
Weighted rms of dataset 0.0979
Time base (days) 2945.97
Number of frequency points 1449

Best-Fit Sinusoid

Maximum power [ZK] 0.8939
RMS of residuals 0.0319
Mean weighted internal error 0.0580
Best sine frequency (cycles/day) 0.000577 ± 0.000007
Best sine period (days) 1732.92 ± 22.00
Amplitude 0.1243 ± 0.0026
Phase (ph) (rad) 0.0989 ± 0.0034
Phase (T0) (days) 53324.88 ± 5.88
Offset 14.9887 ± 0.0019

Top Frequencies

Rank Strength Period (days) FAP
1 0.8939 1733 2.3e-138
2 0.5237 301 8.5e-45
3 0.3525 468 1.2e-25

In addition to the default options for GLSP, we tried a few variations.
1. Change the ofac (Oversampling factor of frequency grid) to 100 from default

value of 100
2. Specify frequency bins to 3000 bins between 1/3000 (low) and 1/30 (high)

cycles per day.
The results of the analysis did not change significantly with these variations.

We also investigated how well we could recover the period and amplitude of
simulated light curves under different conditions. We focused on the relationship
between sigma (the variance term in the PSD function) and the amplitude of the
injected sinusoid. Sigma effectively determines how spread out the data points
are in the light curve.

We designed a series of simulations where we fixed sigma and varied the am-
plitude through 5 points in our chosen range. This process was repeated for various
sigma values. Our goal was to identify any correlations between these parameters
and the accuracy of period and amplitude recovery.
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Figure 3.2: PG1302: LS Periodogram (Frequency Domain)

Figure 3.3: PG1302: LS Periodogram (Period Domain)

Upon plotting the results (Figure 3.5), we observed a general trend: period re-
covery was more accurate for lower sigma values and higher amplitudes. This
aligns with expectations, as lower sigma means less spread in the data points,
making the periodic signal easier to detect. Similarly, higher amplitudes make the
sinusoidal pattern more prominent against any background noise.
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Figure 3.4: PG1302: LSP Fitted Model

(a) Sigma at 0.2 and Amplitude at 0.45 (b) Sigma at 0.8 and Amplitude at 0.05

Figure 3.5: Period and Amplitude recovery by GLSP
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3.3 WWZ Results

We used Weighted Wavelet Z-transform code from Kiehlman et al. [15] We created
1000 frequency bins between 1/3000 (lowest) and 1/30 (highest) cycles-per-day.
We used the default bins for Tau (period) parameter. The algorithm created 368
Tau bins based on the data. Result of analysis for the strongest frequency are
tabulated below.

Table 3.2: Results of WWZ Analysis

Inputs

Number of input points 290
Number of frequency bins 1000
Number of Tau bins 368

Results

Strongest frequency power 0.5824
Strongest frequency(cycle/days) 0.0006
Strongest period(days) 1673
Tau at which strongest frequency was detected 56369.9308

Figure 3.6: PG1302: WWZ - Transform

Note: WWZ analysis algorithm produces a warning.
“WARNING: pmax is larger than the maximum time range of the data divided by
5.0. pmax should not be larger than 589.0.”
This means, ideally the observation period should be long enough to contain 5
cycles of periodic data.

3.4 REDFIT Results

To run the REDFIT program [9], we transformed the CRTS data into a format that
REDFIT program expects. The output of REDFIT program, which is written in the form
of a ".red" file, is then analyzed and plotted.
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Figure 3.7: PG1302: REDFIT Plot with FAP(False-Alarm Probabilities)

Table 3.3: Results of REDFIT Analysis

Configuration

Parameter Description Default Configured Value
nsim Number of simulations 1000 2000
mctest Toggle calculation of False-

Alarm Levels based on
Monte-Carlo simulation

False True

rhopre Prescibed value for rho; un-
used if < 0

-99.0 -99.0

ofac Oversampling factor for
Lomb-Scargle Fourier trans-
form

1.0 10.0

hifac Max. frequency to analyze 1.0 1.0
n50 Number of WOSA segments

(with 50 % overlap)
1 1

iwin Window-type identifier used
to suppress sidelobes in spec-
tral analysis

0: Rectangular 0: Rectangular

Top Frequencies

Rank Period (days) Power 99% FAP Power level
1 1971 16.6531 3.4
2 462 6.5204 3.4
3 305 9.2295 3.3
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3.5 Bayesian Inference Results

We applied Bayesian Inference analysis to two light curves: one from the quasar
PG1302 and another from a simulated LSST dataset. This allowed us to compare
our method’s performance on both real and simulated data. Our analysis focused
on recovering several key parameters:

1. Amplitude, phase, and period of the sinusoid
2. Red noise characteristics (variance and damping timescale)
3. Deviation from the standard Damped Random Walk (DRW) model
4. Scale factor for measurement uncertainties
5. Mean magnitude

For each analysis, we generated corner plots to visualize our results. These plots
show:

• Posterior distributions for each individual parameter
• 2D distributions illustrating relationships between parameter pairs

The corner plots allow us to assess the quality of parameter recovery, associated
uncertainties, and any correlations between parameters. By comparing results
from PG1302 and the LSST simulation, we can evaluate our method’s performance
on real data versus controlled simulations. This Bayesian approach provides a
robust framework for characterizing complex light curves, accounting for both
periodic signals and various forms of noise typical in astronomical time series data.

3.5.1 Bayes Analysis of PG1302 CRTS Observations

Table 3.4: Bayesian Inference analysis on PG1302 CRTS lightcurve

Parameter Description Prior Inferred
A Amplitude of Sinusoid 0 to 0.5 0.13
φ Phase of Sinusoid 0 to 2π 3.33
T0 Period of Sinusoid (years) 0 to 10 4.60
log σ2 Red noise variance on short

timescales (DRW)
-6.0 to 0 -3.10

log τ0 Red noise damping
timescale (DRW)

0.0 to 2.0 0.56

γ Deviation of red noise from
DRW model

-4.0 to +4.0 0.90

ν Scale factor to quantify the
over/underestimation
of measurement uncertain-
ties

0.1 to 2.0 0.96

m Mean magnitude plus any
constant offset

14.5 to 15.5 14.99
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Figure 3.8: Visualizing results of Bayes inference of PG1302 lightcurve

3.5.2 Bayes Analysis of Simulated LSST light curve data for a SMBHB
Input light curve was a simulated LSST light curve for a SMBHB. The following graph
shows the simulated signal.
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Figure 3.9: Simulated SMBHB Light Curve

Table 3.5: Results of Bayesian Inference on Simulated LSST lightcurve

Parameter Description Actual Prior Inferred
A Amplitude of Sinusoid 0.5 0 to 0.6 0.41
φ Phase of Sinusoid 1.0 0 to 2π 0.98
T0 Period of Sinusoid (years) 2.74 0 to 10 2.67
log σ2 Red noise variance on short

timescales (DRW)
-2.0 -6.0 to 0 -1.09

log τ0 Red noise damping
timescale (DRW)

4.40 -4.0 to +4.0 3.98
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Figure 3.10: Bayes Analysis: Corner plot - all parameters



4. Conclusion

4.1 Comparison of Results

4.1.1 Accuracy
REDFIT program [9] gave an estimate of periodicity for PG1302 as 1971 days. This
result matches very well the result ( 1972 ±254 days ) from Kovačević et al [3] GLSP
analysis estimated the period as 1733 days. WWZ analysis estimated the period as
1673 days.

4.1.2 Time taken for computation
Below time observations are just for a comparative study of the different methods
of analysis. These are taken on a development Windows laptop with 2.2GHz intel
i7 processor with 16GB RAM. These are not standardized performance tests.

1. GLSP: 60 ms (Gls function execution time within Python script)
2. REDFIT: 6 sec (Commandline execution time, includes time to read and write

files)
3. WWZ: 55.5 sec (WWZ.tranform function execution time within Python script, for

1000 frequency X 368 tau bins. The execution time increases with more bins)
4. Bayesian Inference: 1 hour to run the analysis with 72 observation data points

and 1000 live points, The performance analysis shows that Bayesian Inference
is computationally very expensive. It is very thorough as it provides inference
for all the parameters of the light curve. Other methods provide estimation
for the periodicity in the light curve. Among these methods, WWZ transform
takes more computation time due to two-dimensional nature of analysis.

4.1.3 Applicability
WWZ analysis is relevant for signals in which the periodicity changes with time. It
expects that ideally the observation should be long enough to include more than
5 cycles.
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Bayesian analysis allows us to create a complex model with multiple parame-
ters and infer those. Other techniques we explored allowed us to estimate the
periodicity and amplitude.

4.2 Summary

The primary aim of this research was to determine the periodicity of Active Galac-
tic Nuclei (AGN) using various analytical techniques. By examining Supermassive
Black Hole Binaries (SMBHB), AGN, gravitational waves, and Pulsar Timing Arrays
(PTA), we provided a comprehensive introduction to the fundamental concepts of
our study.

To simulate the light curves, we employed the Damped Random Walk (DRW) pro-
cess and introduced sinusoidal signals to the data, creating a robust foundation for
our subsequent analysis. Our investigation encompassed several methods for iden-
tifying periodicity, including the Lomb-Scargle periodogram, Wavelet Weighted
Z-transform (WWZ), REDFIT, and Bayesian inference.

Our results demonstrated that among these techniques, Bayesian inference, while
valuable, proved to be computationally intensive, suggesting a trade-off between
precision and resource expenditure.
This study also underscores the necessity for continued exploration of computa-
tionally efficient methods. Future research could further optimize these techniques
or develop novel approaches, ultimately enhancing our understanding of SMBHB
and their associated phenomena.
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