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Abstract

Dark matter remains one of the most enigmatic components of the universe, con-
stituting approximately 27% of its total mass-energy content. Despite its significant
gravitational influence on cosmic structures, dark matter’s elusive nature has pre-
vented its direct detection.
Among the proposed candidates for dark matter, QCD Axions are particularly
compelling due to their theoretical origins in the solution to the strong CP problem
in quantum chromodynamics. This project explores the potential of detecting
QCD axion miniclusters through gravitational microlensing, a phenomenon where
a massive object acts as a lens (due to curvature of space-time near it) and
magnifies the light from a background source.
Our project makes a brief introductory study of gravitational lensing and microlens-
ing events. Further on we discuss the four most prominent Dark matter Candidates:
QCD Axions, Primordial Black Holes, Weakly Interacting Massive Particles and Ultra
Light or Fuzzy Dark matter. Then We move to reproducing the result of the paper
Fairbairn et. al. (2017)

- Akshank Tyagi

Figure 1: Cosmic Energy Density, Pie Chart from Planck 2013 data, Image credits2

2DE: Tobias Roetsch/All About Space Magazine;
DM: Cosmic Web from the Millennium Simulation/MPA;
NM: NGC 4414 imaged by HST 1995/NASA

https://akshanktyagi.github.io/
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1. Gravitational Lensing

1.1 Brief History

The phenomenon of bending of light due to the presence of objects along its
path to an observer is termed gravitational lensing. The amount of deflection
caused by Sun on starlight was first calculated by Soldner in 1801 using Newtonian
gravity and assuming that light is made of corpuscles traveling at the speed of light.

In 1911, Einstein did the calculation again using his Theory of Special Relativity and
got the same result. But in 1916 on using the full General Relativity equations, he
found the deflection amount to be twice of what he (and Soldner) found earlier.
In an expedition led by Sir Arthur Eddington in 1919, the observations were found
to agree with Einstein’s calculations.

1.2 Deflection

In this section, we will derive Einstein’s result for the amount of deflection using
Fermat’s principle.
Traveling in a medium with refractive index n, the speed of light becomes v = c/n.
Then, for a fixed distance d we can find the time taken by light to travel through
the medium as

tmedium =
d
v
=

n
c

d (1.1)

Then, by Fermat’s principle, this time is extremal, which means its variation vanishes

δ

∫ B

A
n(⃗x(l))dl = 0 (1.2)
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To proceed, we need to find the form of the refractive index n, and for this, we use
a form of the Schwarzschild metric1

ds2 =

(
1+

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
(d⃗x)2 (1.3)

For light, ds = 0,(
1+

2Φ

c2

)
c2dt2 =

(
1− 2Φ

c2

)
(d⃗x)2 (1.4)

Then, the speed of light in gravitational field is

v =
|d⃗x|
dt

= c

√√√√1+ 2Φ

c2

1− 2Φ

c2

≈ c
(

1+
2Φ

c2

)
(1.5)

where we have used the approximation Φ/c2 ≪ 1. The refractive index is

n =
c
v
=

1
1+ 2Φ

c2

≈ 1− 2Φ

c2 (1.6)

To solve the variational problem, we choose an affine parameter λ to parameterize
the path of the light such that

dl =
∣∣∣∣ d⃗x
dλ

∣∣∣∣dλ (1.7)

which gives

δ

∫
λB

λA

dλ n[⃗x(λ )]
∣∣∣∣ d⃗x
dλ

∣∣∣∣= 0 (1.8)

Defining the Lagrangian

L( ˙⃗x, x⃗,λ ) = n[⃗x(λ )]
∣∣∣∣ d⃗x
dλ

∣∣∣∣ (1.9)

where the dot denotes the derivative with respect to the affine parameter λ . and
we have∣∣∣∣ d⃗x

dλ

∣∣∣∣= | ˙⃗x|= ( ˙⃗x2)1/2 (1.10)

which allows us to use Euler-Lagrange equations

d
dλ

∂L
∂ ˙⃗x

− ∂L
∂ x⃗

= 0 (1.11)

Now,

∂L
∂ x⃗

= | ˙⃗x|∂n
∂ x⃗

= (⃗∇n)| ˙⃗x| (1.12)

∂L
∂ ˙⃗x

= n
˙⃗x
| ˙⃗x|

(1.13)

1The metric is signature is mostly negative and Φ is Newton’s gravitational potential.
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The vector ˙⃗x is a tangent vector to the light path and for some suitable choice of
the parameter λ , we can assume it to be normalized i.e. | ˙⃗x| = 1. We represent the
unit tangent vector to the light path as e⃗ = ˙⃗x. From this, we get,

d
dλ

(n⃗e)− ∇⃗n = 0 (1.14)

⇒ n ˙⃗e = ∇⃗n− e⃗(⃗∇n · e⃗) (1.15)

The second term on the right-hand side of the last equation is the derivative along
the light path and thus the whole right-hand side is the gradient of n perpendicular
to the light path.

˙⃗e =
1
n

∇⃗⊥n = ∇⃗⊥ lnn (1.16)

Using the approximation Φ/c2 ≪ 1, we get lnn ≈−2Φ/c2, which gives us

˙⃗e ≈− 2
c2 ∇⃗⊥Φ (1.17)

The total deflection angle of the light path can be written as integral over − ˙⃗e along
the light path

ˆ⃗α =
2
c2

∫
λB

λA

∇⃗⊥Φdλ (1.18)

For a light ray that is going in z-direction and passes a lens at z = 0 with impact
parameter b, the deflection angle becomes

ˆ⃗α(b) =
2
c2

∫ +∞

−∞

∇⃗⊥φdz (1.19)

If the lens is a point mass (as shown in fig. 1.1)

Φ =−GM
r

(1.20)

with r =
√

x2 + y2 + z2 =
√

b2 + z2 and b =
√

x2 + y2. The deflection angle then comes
out to be

α̂(b) =
2GM

c2

∫ +∞

−∞

dz
(b2 + z2)3/2 =

4GM
c2b

b̂ (1.21)

1.3 Lens Equation

The point mass or cluster of objects form a lens which causes the bending of light
from a source on its way to an observer. To make our calculations easier, we can
assume that the source and the lens can be replaced by planes with projected
mass density.
This thin screen approximation works because light travels huge distances in the
cosmological context where the lens systems can be seen as perturbations in an
otherwise smooth, undeflected path; also, the maximum deflection occurs near
the point of nearest contact of the light path with the lens.
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Figure 1.1: Deflection of light path by angle α due to a point mass M with impact
parameter b.

Consider such a source-lens system as shown in fig. 1.2.
Using the angular diameter distance definition i.e.

separation = angle×distance (1.22)

we can write η⃗ = β⃗Ds, ξ⃗ = θ⃗Dd and θDs = βDs + α̂Dds.
Defining the reduced deflection angle

α⃗ =
Dds

Ds

⃗̂α (1.23)

we get the lens equation

β⃗ = θ⃗ − α⃗ (⃗θ) (1.24)

Figure 1.2: A source-lens system showing the deflection of light from a source S by
a lens with impact parameter ξ on its way to an observer.
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1.4 Gravitational Microlensing

Microlensing refers to a specific type of gravitational lensing caused by smaller
objects like stars, planets or other massive compact objects.
When a distant star or quasar passes through the Einstein radius of a massive
compact foreground object, its light bends around the lens which leads to two
virtual images of the source, resulting in an observable magnification. The time-
scale of the transient brightening depends on the mass of the foreground object
as well as on the relative proper motion between the background ’source’ and
the foreground ’lens’ object.
Microlensing was first observed in the multiply-imaged QSO 2237+0305 (Irwin et
al. 1989). Paczynski in 1986 had the brilliant idea of using microlensing to search
for DM candidates, the so-called Massive Astrophysical Compact Halo Objects
(MACHOs) in the Milky Way halo.

1.4.1 Imaging a Point Source by a Point Mass Lens

For a point mass lens, we can use the Einstein radius to rewrite the lens equation in
the form:

β = θ − θ 2
E

θ
(1.25)

The lens equation has two solutions:

θ± =
1
2

(
β ±

√
β 2 +4θ 2

E

)
(1.26)

Any source is imaged twice by a point mass lens. The two images are on either
side of the source, with one image inside the Einstein ring and the other outside.

Figure 1.3: The movement of the two images in a Microlensing event

1.4.2 Magnification

Gravitational lensing preserves surface brightness of source, but changes the
apparent solid angle of a source. Thus the total flux received from source in-
creases and so does its apparent magnitude. For a circularly symmetric lens, the
magnification factor µ is given by

µ =
θ

β

dθ

dβ
, (1.27)
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µ± =

[
1−

(
θE

θ±

)4
]−1

=
u2 +2

2u
√

u2 +4
± 1

2
(1.28)

In general for a Lens ∼ M⊙, the angular separation of the two images is too small
to be resolved. However, even when it is not possible to see the multiple images,
the time variable magnification can still be detected if the lens and source move
relative to each other.

1.4.3 Light Curve

The expected time scale for microlensing-induced variations is given in terms of
the typical angular scale θE , the relative velocity v between source and lens, and
the distance Dd to the lens:

t0 =
Dd .θE

v
(1.29)

Figure 1.4: A Microlensing-induced light curve for a star- star event, also a possible
exoplanet-star event can be seen.

Depending on the distance of closest separation between source and lens, we
get a characteristic light curve for magnification of the source.

Figure 1.5: Microlensing-induced light curves for different separations between the
source and the lens ρ. The separation is expressed in units of the Einstein radius.
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1.5 Microlensing Simulation 1

APythonn simulation of microlensing events was made for a fixed point lens object
and a moving point source behind the lensing plane, with the following parameters:
the Lens Position, RE value and Impact parameter(Distance of closest approach)
scaled by RE .
The Simulation then animated the two images of the source and plotted the light
curve for the event inreal-timee.

Figure 1.6: A single frame from the Simulation Output Display

Figure 1.7: Frames depicting movement of the images, as the source passes
through the Einstein tube of the lens.
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Figure 1.8: Observed light curves for varying closest separation distances between
source and lens (impact parameter)

1.6 Microlensing Simulation 2

Another Python simulation of microlensing events for a fixed point source and a lens
moving across the soure line of sight. This is a more realistic microlensing simulation
with free parameters: Mlens, Dl, Ds, Dls(These give the value of RE for the lens); b
-impact parameter; and Vt -Tangential Velocity of the lens relative to the source in
the lensing plane.
The animation output gives the magnification measured by a detector (light-curve)
but not the images.

Figure 1.9: A single frame from the Simulation Output Display. Note the fixed source
and moving lens.
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We used the following standard parameter values for microlensing of an An-
dromeda star by an axion minicluster in Milky Way Halo.

Mlens = 10−8 Msun

Vt = 200 km/sec (Tangential velocity)
b = 1.6x10−3 AU (Impact parameter)
DS = 778 kpc (Distance to source - Andromeda)
DL = DS / 2 (Distance to lens)
DLS = DS - DL (Distance between lens and source)

Figure 1.10: Observed light curves for varying the free parameters: Mlens, Vlens, b





2. Dark Matter Candidates

2.1 Introduction

2.1.1 What do we know about dark matter ?

author : Mehul Goyal

• Expressed as a fraction of the total density of the universe, Dark Matter makes
up 26 percent of the universe, compared to 6 percent in ordinary matter
and 68 percent in dark energy. The strongest evidence for this distribution
comes from the anisotropies in the Cosmic Microwave Background.Cosmic
Microwave Background is composed of the photons that decoupled from
baryons after the recombination. The fact that baryons were tightly coupled
to the photons before the recombination, while dark matter was not, allowed
us to compute the densities of matter and dark matter separately from the
Cosmic Microwave Background

• The local density of dark Matter is around 0.3 to 0.4 GeV cm-3, which equiva-
lent to one proton every few cubic centimeters or one solar mass per cubic
light year. The actual density at precise location of the Earth can be different.
This is particularly relevant to axions as they can also form mini clusters as
discussed later.

• The velocity dispersion of Dark Matter is around v = 200 km s-1, and our local
motion with respect to the galactic rest frame is towards the constellation
Cygnus.

• Dark Matter must be non relativistic and have negligible pressure. Galaxy
formation would not be possible in case of relativistic dark matter

• Dark Matter had to be present, as well have a gravitational influence in the
Universe long before the Cosmic Microwave background formed, and its
gravitational influence began before the universe was 1 years old.

• Dark Matter is weakly interacting. It cannot interact with itself or ordinary
matter too strongly.
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2.2 QCD Axion

author : Mehul Goyal

2.2.1 The Standard Model

The Standard Model is a mathematically consistent quantum field theory whose
predictions have been experimentally verified to an astounding precision. The
Standard Model provides a very accurate description of all the visible matter in
the universe, quarks and leptons, the electromagnetic, weak and strong nuclear
forces acting between them. The crowning success of the standard model was the

Figure 2.1: The Standard Model

discovery of the Higgs Boson. We will discuss the Higgs Mechanism shortly. Some
predictions of the standard model which have been verified by experiments to
astounding precision include existence and mass of top quark and gyromagnetic
ratio of electron to name a few.

Despite the manifold successes, the standard model has left theoretical physi-
cists unsatisfied due to its various shortcomings. We will discuss the two major
shortcomings which are addressed by the theory of axions. The term "axion" for the
particle arising from the solution to the strong CP problem described below, are
also known as the QCD Axions. There are other theories for Dark Matter particles
described by ALPs ( Axion Like Particles), which can be very different from the
QCD Axion discussed here.

• The Standard Model predicts existence of antiparticle of every particle. How-
ever, astrophysical and cosmological observations tell us that most of the
visible matter that we see today is composed of matter and no large con-
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centrations of antimatter have been found. This is called the cosmological
matter-antimatter asymmetry.

• Theory predicts CP symmetry violation in case of the weak force, which was
observed experimentally in 1957 by Chien-Shiung Wu. Quantum Chromo-
dynamics, the quantum field theory for the strong force, in theory allows for
CP violations in case of the strong force as well. CP Violation in case of the
strong force has not been seen experimentally and this called the String CP
problem. One of the consequences of CP Violation in case of strong force is
non-zero electric dipole moment of the neutron.

2.2.2 CPT Symmetry
Charge (C), Parity (P) and Time Reversal(T) symmetry is a fundamental symmetry of
physical laws under the simultaneous transformations of charge conjugation, parity
transformation and time reversal. CPT is the only combination of charge, parity
and time that is observed to be an exact symmetry of nature at the fundamental
level.
The CPT Theorem says that the CPT Symmetry holds for all physical phenomenon,
or more precisely, that any Lorentz Invariant local quantum field theory with a
Hermitian Hamiltonian must have the CPT Symmetry. In order to preserve this
symmetry, every violation of the combined symmetry of two of its components
(such as CP) must have a corresponding violation in the third component (such as
T). Thus violations in T-Symmetry are often referred to as CP violations

Electric Dipole Moment of Neutron
If the strong force is CP violating, it is predicted that the neutron will exhibit an
electric dipole moment. The neutron electric dipole moment will violate the CPT
symmetry. As we discussed above, if something violates CP symmetry, in order
for the CPT symmetry to hold, there must be a corresponding violation in T. As an
illustration, we will discuss this in case of electric dipole moment of neutron. If the

Figure 2.2: The effect of transformations of time reversal and parity on electric
dipole

neutron has an electric dipole moment, by Wigner Eckart Theorem we know that
it must be aligned with the neutron’s spin (All the other components of EDM will be
averaged to zero). As shown in the diagram above, if we reverse the direction of
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time, the direction of neutron’s spin will also get reversed. Therefore, the direction of
electric dipole moment of neutron will change under a T transformation. However,
the direction of electric field remains the same under a T transformation. Therefore,
the energy of neutron in an electric field will change under a T transformation,
violating the T symmetry and as a consequence the CP symmetry as well. Note
how the EDM of neutron will violate P symmetry as well, as illustrated through the
above figure.

2.2.3 Spontaneous Symmetry Breaking and Higgs Mechanism

Spontaneous Symmetry Breaking can describe systems where the equations of
motion or the Lagrangian obey symmetries, but the lowest energy vacuum solutions
do not exhibit the same symmetry. The discovery of the Higgs Boson in 2012 proved
the existence of an elementary spin zero boson undergoing spontaneous symmetry
breaking. This proof of principle invalidated the theoretical prejudice against the
QCD Axion, which shares these properties with the Higgs Boson.

Figure 2.3: Particle in ’Mexican Hat’ potential showing spontaneous symmetry
breaking

Quantum Field Theory successfully explained electromagnetic interaction through
quantum electrodynamics. Quantum electrodynamics is an abelian gauge theory
with U(1) symmetry group and has one gauge field, the electromagetic four
potential, with the gauge boson being the photon. The success of Quantum
Electrodynamics in explaining the electromagnetic interaction motivated physicists
to apply the same approach to explain the weak interaction. But the approach
faced a major challenge in explaining the weak interaction. The Gauge Bosons
were required to be massless in order to protect the symmetries of the theory,
which was in direct conflict with the need for massive weak force carriers (W and Z
bosons). The weak force carriers needed to be massive to explain the short range
of the weak force.
The solution came through the Brout-Englert-Higgs mechanism, which introduced
a new quantum field, the Higgs field, and the process of Spontaneous Symmetry
Breaking. An analogy for spontaneous symmetry breaking is a pencil standing on
its tip. Initially, the system is symmetrical, but as soon as the pencil falls, it breaks
the symmetry by selecting a direction, though the fundamental laws remain
unchanged. We can also try to understand the process through a sombrero
potential system as shown in the above figure. Imagine a ball initially at the top of
the peak of the potential. In this initial metastable state, the system is completely
symmetric. But due to quantum fluctuations, the ball can spontaneously roll down
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in an arbitrary direction to a stable state,which no longer has the symmetry of the
initial system, even though the equations still possess the original symmetry.
The way this worked for particle masses is as follows: In the early universe, the
Higgs field was in a symmetrical but unstable state. Shortly after the Big Bang, the
Higgs field transitioned to a stable state that broke the initial symmetry. This broken
symmetry allowed the W and Z bosons to acquire mass while preserving the overall
symmetry of the equations.

2.2.4 Peccei-Quinn Symmetry
Piccei-Quinn symmetry is a global axial U(1) symmetry.
A global symmetry is one that keeps a property invariant for a transformation that
is applied simultaneously at all points of spacetime, while a local symmetry is one
with a different symmetry tranformation at different points of the spacetime, that
is, a local symmetry transformation is parameterized by the spacetime coordi-
nates. Axial means that symmetry transformations act differently on left and right
handed particles. Right handed particles have their velocity aligned with the
orientation of spin while left handed particles have their velocity opposite to the
spin orientation.U(1) is equivalent to symmetry in rotation about an axis.

2.2.5 Nambu-Goldstone Bosons
Nambu-Goldstone bosons are bosons that appear necessarily in models exhibiting
spontaneous breakdown in continuous symmetries. Lets consider an example
of spontaneous symmetry breaking in case of magnets. Imagine a number of
magnets at a very high temperature, which makes them move randomly. As
the system cools down, this random thermal motion gets overpowered by the
magnetic interaction and they all end up aligning in an arbitrary direction. The
equations do not start out with a preferred direction, but under certain conditions
the system choses a preferred direction. In this case, the goldstone bosons are
called magnons.
When you write down the Lagrangian in Quantum Chromodynamics, the CP
violating terms are characterized by a parameter θ , which is known to be an
angle and can take any value between 0 and 2π. Symmetry specifies no preferred
value. The value of θ is what that determines the electric dipole moment of the
neutron. Peccei and Quinn proposed θ to be a dynamical quantity over both
space and time, i.e. they proposed θ to be a new quantum field for which the
value θ = 0 is energetically favourable. This provides a natural way to preserve CP
symmetry in strong interactions. The Nambu-Goldstone boson of PQ Symmetry is
the axion and the quantum field associated with is the θ field.

2.2.6 QCD Cross Over
We haven’t solved the strong CP problem yet, as the axion field can apriori take
any value due to the degeneracy in the lowest energy solutions of Sombrero
Potential. The next part of the story is QCD Cross Over.
In the early universe, the temperature had to fall below a certain temperature
for the protons and neutrons to exist. Below this temperature (≈ 200 MeV), QCD
becomes strongly coupled and confines quarks and gluons (the carriers of strong
force) into bound state protons and neutrons. This cross-over breaks the PQ sym-
metry and distorts the sombrero potential as shown in the above figure, resulting
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Figure 2.4: Sombrero Potential of PQ Symmetry

in a discrete minima. Thus, after the QCD Cross Over, the axion field rolls down to
the value of one of these minima and the CP violating terms in QCD Lagrangian
vanish.

2.2.7 Axion Dark Matter
The QCD Axion is one of the most viable candidates for dark matter particles. The
axion is a pseudo Nambu-Goldstone boson of the spontaneously broken Piccei
Quinn symmetry. We call it ’pseudo’ because the PQ symmetry not being an exact
symmetry, is explicitly as well as spontaneously broken. The explicit breaking results
in Axions not being massless like the goldstone bosons are required to be, but are
still extremely light particles (≈ 10−5 ev).
There cosmology of the axion dark matter depends upon the epoch of cosmology

during which the PQ symmetry is broken. If the symmetry gets broken during the
inflationary period, all the complexity of the phase transition is lost. This is because
epoch of inflations smooths the universe (consequently the axion field) on the
largest of scales, in accordance with the observations. In this case, the evolution
of axion dark matter is described by a wave equation with the expansion of the
universe acting as a damping term. The two inputs to the wave equation are the
initial value of the axion field and the axion mass.
The alternate scenario is that the PQ symmetry breaks after the smooth cosmic
initial conditions have already been established by the inflation epcoch. In this
case, the axion field is not smoothed out and has topologial defects. There are
large amplitude axion field fluctuations present on the scale of hubble horizon at
that time. The Kibble mechanism smoothens the axion field on scale of the horizon
till the time when expansion rate of the universe falls below the natural frequency
of oscillation of the axion field, which is dependent on the mass of the axion (
3H(t0) ≈ ma, where H is the Hubble rate. From this point onwards, the axion field
oscillates about minima, and its equation of state becomes that os presureless
matter. It is at this time that axions are produced in large numbers. This epoch last
for a short period, as the large-scale energy density of the axion field, stored up
from the phase transition, is converted into axion particles. Post the production
epoch, the axions "freeze-out" and their co-moving density becomes constant,
this means that number density of axions is diluted away by the expansion of the
universe. The number density of a particle at the time of its freeze-out is called its
relic density.
In the latter scenario, there is possibility of formation of axion minicusters which shal
be discussed later. Due to large de Broglie wavelength of axions ( owing to their
extremely low mass and non-relativistic nature), axions populate the universe in a
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Figure 2.5: Alternate scenarios of axion DM evolution dpending on the epoch in
which PQ symmetry breaks. The scenario in which PQ symmetry breaks during
inflation is on left and post inflation scenario is on the right. tHot is the time at which
inflation ends, tdyn is the time at which axion production starts, tcold is the time at
which axions "freeze-out"

coherent wave like state.
Some of the characteristic features of axion DM that separate it from its heavier
counterparts like WIMP are :

• The de Broglie Wavelength. Gradient Energy dominates over gravitational on
smaller scales. As a consequence, the axion field is smooth on small scales
and there is a minimum mass for Dark Matter halos.

• At very high densities, the axions can potentially form an axion star. At these
extreme densities, axions can form a soliton ( a stable wave-like configuration)
supported b an equilibrium between gravity and gradients.

• Wave Turbulence and interference. In the structures of cosmic web, axion
waves have dynamical velocities. Where there are coherent flows, this leads
to interference patterns in filaments

A visual depiction of these unique features is present in the following figure.
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Figure 2.6: Parts of cosmic web formed by gravitational interactions and interfer-
ence of axion waves

2.3 Primordial Black Holes

author : Chirag Sharma

As the name suggests, Primordial black holes (PBH) are black holes that formed in
the early universe, just after the end of the inflationary period.
These are formed by the collapse of density perturbations in the radiation domina-
tion era.
The reason PBHs are considered as a candidate of dark matter is that they fulfill all
of the basic criteria of being dark matter. PBHs are cold i.e. non-relativistic, and as
they formed in the early universe i.e. before the big bang nucleosynthesis, they
are non-baryonic and they are stable (see 2.3.1).

PBHs are one of the unique dark matter (DM) candidates as they do not bring any
new particles with them in the DM modeling, unlike most other candidates.
Now, let’s discuss about the formation of these primordial black holes.

2.3.1 Formation of PBH
For the formation of these black holes, we need a collapse of large-density pertur-
bations. The standard slow-roll inflationary period does not give rise to perturbations
this large. So, we need a brief period of ultra slow-roll to generate enough power
for these density fluctuations.
For the scalar field φ driving inflation, the standard equation of motion is

φ̈ +3Hφ̇ +V ′(φ) = 0 (2.1)

For slow-roll inflation, φ̈ ≈ 0, which implies we get the following as the equation of
motion for the slow-roll inflation

3Hφ̇ +V ′(φ) = 0 (2.2)

However, during ultra-slow-roll inflation, V ′(φ)≈ 0 which gives us

φ̈ +3Hφ̇ = 0 (2.3)

So the inflation period now consists of a brief ultra-slow-roll period, the usual slow-
roll, and reheating at the end for the inflaton energy to decay into standard model
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particles.
To form a PBH, you need large-density perturbations to collapse. During inflation,
the horizon (aH)−1) decreased while the universe faced exponential expansion.
The density contrasts were stretched to macroscopic scales. As PBH formation
is a causal process, a PBH cannot be formed during inflation when the different
patches of the universe are not in causal contact. Only after the end of inflation,
a mode can transfer its enhanced energy due to inflation, to density perturbations
during radiation domination upon re-entry in the horizon. So, a PBH of scale 1/k
cannot form while k ≪ aH. This is depicted in fig. 2.7.
Assuming that PBH formation takes place by the collapse of density perturbations

Figure 2.7: Evolution of comoving scales with the Hubble horizon (aH)−1. The blue
horizontal line denotes a perturbation mode which can be responsible for PBH
formation. Plot from Ogan, Tasinato 2023

of a mode when it re-enters the horizon during radiation domination, we can find
an upper limit on the mass of the PBH MPBH .
We work with the FLRW metric

ds2 =−dt2 +a2(t)(dr2 +dΩ2) (2.4)

where dΩ2 describes the line element for a 2-sphere. For photons, ds = 0 and
Hubble radius (aH)−1 is the radial distance,∫ t

0

dt
a(t)

=
∫

dr =
1

aH
(2.5)

1
H

= a(t)
∫ t

0

dt ′

a(t ′)
≈ 2t (2.6)

where for the last equality, we have used the relation a ≈ t1/2 during radiation
domination.
Now,

MPBH = MHorizon = ρVHorizon (2.7)

where rho is the density and VHorizon is the volume of the horizon or the Hubble
Volume at the time of the collapse of the Hubble Mass MHorizon which is during
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the radiation domination era. To cause the mass to collapse, we use the critical
density rho = ρcr =

3H2

8πG and the Hubble Volume is given by

VHorizon =
4
3

πR3
Horizon (2.8)

Using these values and eq. 2.6 in eq. 2.7, we get

MPBH =
tc3

G
(2.9)

where we have inserted the speed of light factor c back into the equation.
We can rewrite this equation as

MPBH ≈ 1015g
t

10−23s
(2.10)

and this equation tells us that a PBH with mass 1015g would be evaporating by
Hawking radiation in the present epoch, while PBH of mass greater than this limit
would be stable and thus, can account for dark matter .

2.3.2 Observing Signatures of PBH
We focus on a recent paper on studying PBH as dark matter candidates 1.
Various constraints like accretion and dynamical processes, lensing probes, Hawk-
ing evaporation limit allows for PBH in the mass range 10−16M⊙−10−11M⊙ to account
for 100% of the dark matter (see fig. 2.8).

Figure 2.8: Plot from Marc Oncins, 2022. THe shaded region represents the mass
range excluded by various probes.

To probe PBH in this window, we need to make use of X-rays and more specifically,
X-ray microlensing.
To find microlensing events from observational data of a pulsar, we follow a statisti-
cal approach as described in the paper [1].

1 by Manish, Nirmal and Prateek of IISc Bangalore. arXiv:2405.20365
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We download a segment of NICER observation data for a pulsar SMC-X1 using
NASA data archive. We run the data analysis software HEASOFT and process the
data with the nicer-l2 pipeline to get a cleaned event file. Then, this is processed
again with the nicer-l3 pipeline to produce light curves. After doing these steps,
we’ll get a plot like fig. 2.9

Figure 2.9: Light curve for a 864 second segment of SMC-X1 pulsar NICER data
extracted using HEASOFT.

Then, we can do signal processing to remove the noise and get a scatter plot of
the light curve. Following the statistical prescription, we’ll say we found a microlens-
ing event if we get 3 consecutive time bins which have photon counts larger than
mean +3σ .
Microlensing by PBH in the geometric optics regime produces magnification which
is independent of the source frequency. Using this fact, we can filter events like
X-ray bursts and other events that can cause high photon counts. We can achieve
this by observing the event in two different energy windows and classifying it as a
microlensing event if the light curve is identical.
Following this, we can calculate decay rates, as described in the paper, to find
limits on PBH in this mass range.
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2.4 Weakly Interacting Massive Particles

author : Suryansh Srijan

2.4.1 What exactly are Weakly Interacting Massive particles?
Weakly Interacting Massive Particles (WIMPs) represents a lot of hypothetical can-
didates. Generally, this includes any non-baryonic massive particle that interacts
with any weak or sub-weak interaction (e.g., axionic, gravitational). In the case of
WIMPs, self-interactions are also weak. The most popular WIMP candidate is the
lightest neutralino of supersymmetry (SUSY). To explain the relic abundance of DM
as WIMPs, the freeze-out mechanism is used.

Figure 2.10: Typical ranges of the cross-section of DM interactions with the ordinary
matter as a function of DM mass are shown for some DM candidates that are
strongly motivated by particle physics. The red, pink and blue colours represent
HDM, WDM and CDM, respectively.

2.4.2 Freeze-out Mechanism
In the early universe, WIMPs were in equilibrium with the rest of the cosmic plasma
at high temperatures but then experienced a freeze-out when the temperature
dropped below its mass. In the case of WIMPs, two heavy particles X can annihilate,
and produce two light (essentially massless) particles. These lighter particles are
assumed to be in complete equilibrium with the cosmic plasma. The Boltzmann
equation for WIMPs thus obtained is:

dnX

dt
+3HnX =−⟨σv⟩(n2

X −n2
X ,eq) (2.11)

where H is the Hubble parameter, nX is the number density, nX ,eq is the equilibrium
number density, and ⟨σv⟩ is the mean annihilation cross-section times Moller velocity.
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Rearranging the terms we get:

dnX

dt
=−3HnX −⟨σv⟩(n2

X −n2
X ,eq) (2.12)

Figure 2.11: Evolution of the DM yield for a standard freeze-out scenario

2.4.3 WIMP Miracle

On carefully solving the Boltzmann equation, we get the following result:

ΩDMh2 ≈ 3×10−27cm3s−1

⟨σv⟩
(2.13)

Putting in a typical value of v = 0.1c, in thus obtained ⟨σv⟩, gives an annihilation
cross-section similar to that of weak forces. This coincidence is termed the WIMP
miracle which made it an outstanding candidate for Dark Matter.

2.4.4 Supersymmetry

Supersymmetry is a principle used to extend the Standard Model. It provides
elegant solutions to many current problems in particle physics. The Minimal Super-
symmetric Standard Model (MSSM) is the simplest extension of the Standard Model
that resolves many conflicts in the current Standard Model. MSSM proposes that
a partner particle with different spin properties exists for every known particle. It
provides two DM candidates: sneutrino (the superpartner of the neutrino) and the
neutralino (a linear combination of two higgsinos, the wino, and the bino). The
sneutrino has been ruled out due to its full-strength gauge couplings to SM and
bounds from direct detection experiments.
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2.4.5 Lightest Neutralino of SUSY

The neutralino is the lightest neutralino of supersymmetry and is the most promising
DM candidate of SUSY. In most models, the LSP (lightest supersymmetric particle) is
mostly Bino with some mixture of Wino and Higgsinos. Currently, there are many
collider searches for supersymmetric particles, but none have been found. The
lower bounds on the mass of all supersymmetric particles are increasing, but the
LSP remains a viable DM candidate.

2.4.6 Experimental Situation

There are three ways to detect DM:

1. Direct Detection
2. Collider Searches
3. Indirect Detection

Motivation for Indirect Searches

Despite many model-dependent factors, most of them predict ⟨σannv⟩∼ 2 ·10−26cm3s−1.
Indirect searches that are sensitive to dark matter annihilating at approximately this
rate, will be able to test a lot of WIMP models. E.g. a lot of gamma-ray searches,
as well as cosmic-ray antiproton and positron, are sensitive to DM with predicted
annihilation cross-section, for masses upto O(100)GeV .

2.4.7 Direct Detection

During DM annihilations, the residue lighter particles formed are assumed mostly
to be gamma rays (or they further decompose to give gamma rays). Most direct
detection approaches study gamma-ray signals. The brightest gamma-ray signal
from DM annihilations is expected to come from the Galactic Centre (GC). The
astrophysical background in the direction of the GC is difficult to model, but an
excess of GeV-scale emission has been detected in the Fermi data. This gamma-
ray excess is consistent with those expected from annihilating DM.
Another explanation for this gamma-ray excess is a large population of low-
luminosity millisecond pulsars with few accompanying low-mass X-ray binaries.
The arguments for and against these pulsars are currently in debate.

Dwarf Spheroidal Galaxies (dSphs)

dSphs in the Local Group do not suffer from the same problems as the GC of
the Milky Way. dSphs are expected to be DM-dominated and are free from the
astrophysical backgrounds plaguing the GC. The expected signal is much lower
for a single dSph, therefore a stacking analysis is required.

Galaxy Clusters

Galaxy clusters are another promising target for gamma-ray searches. The main
drawback compared to dSphs is that they suffer from large and poorly understood
astrophysical backgrounds. The expected sensitivity depends strongly on the DM
substructure, which is unknown.



2.5 Ultra Light Dark Matter 31

2.5 Ultra Light Dark Matter

author : Akshank Tyagi

Ultra-light dark matter (ULDM) is a family of dark matter Candidates (DM) in which
DM is composed of bosons with masses between 10−24 eV < m < 1eV in the very
vast mass range of all Dm Candidates (Fig 2.10).

These models have drawn a lot of interest in recent years because of their in-
triguing ability to generate Bose-Einstein condensates (BECs) or super-fluids on
Galactic scales.

Figure 2.12: Sketch (not to scale) of the huge range of possible DM models that
have been conceived

These Bosons upon condensation, act as a single coherent state, represented by
the condensate’s wavefunction. The concept is that condensation takes place
within galaxies, while outside, on larger scales, it preserves the successes of Cold
Dark Matter (CDM). This wave-like behavior of dark matter on galactic scales,
emerging from condensation, can explain some of the peculiarities observed in
DM behavior on smaller scales.

2.5.1 Discrepancies at Small Scales in ΛCDM

Figure 2.13: shows how the small scales might reveal different behavior for different
DM components,

In this section, I will describe how some of the contentious theoretical predictions
for DM halos from numerical simulations of the small scales considering the CDM
model compares to astrophysical observations.



32 Chapter 2. Dark Matter Candidates

1. Cusp-Core Problem:
Expected density profile from colissionless simulations is the NFW(Navarro-
Frank-White) cuspy profile at galactic Center:

ρcenter = 1/rγ

NFW has γ = -1
THINGS and LITTLE THINGS measured Rotation curves of multiple dwarf galax-
ies and found smaller γ = 0.29 ± 0.07

Solved by BEC Dark Matter and MOND theories

2. Missing Satellite Problem:

• DM Subhaloes- simulations predict several hundreds of subhalos with
vmax = 10 - 30kms, that are large enough to host a galaxy, around a Milky
Way size galaxy
While till now SDSS and DES data shows 12 classical and around 40 Ultra
faint Satellites for MW. Much less than predicted

Solution: One can expect that for low mass subhalos, galaxy formation is
suppressed by striping gas mechanisms

• Massive DM Subhaloes- Most Massive subhalos predicted by those sim-
ulations have central masses ( Vmax > 30kms) that are too large to host
the observed satellite galaxies of MW which have (12 < Vmax < 25kms)
which are not massive enough The puzzle is why should the most massive
subhaloes, where the gravitational potential is the strongest and the
striping gas mechanisms cited above are not important, be too big to
fail to form stars and galaxies?

Solution: BEC suppresses the formation of small scale subhaloes, and
reduces the central densities of massive subhaloes (or modifies the dy-
namics of the central regions)

3. Scaling Relations:

• Baryonic Tully-Fischer Relation (BTFR) that relates the total baryon mass
of the galaxy to the asymptotic circular velocity in galaxies,

V 4
f = a0GMb

This empirical scaling relation is shown to hold for large ranges of masses,
almost 6 orders of magnitude the slope of the BTFR is different from the
one predicted by CDM, V 3

f α Mb

• Mass discrepancy Acceleration Relation (MDAR) : a relation between
the gravitational acceleration from baryons alone and acceleration
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inferred from rotation curves.

These empirical relations, coming directly from observations, show the surpris-
ing feature that in galaxies the dynamics is dictated by the baryon content,
even when DM dominates. Even more unexpected these relations are very
tight, showing very little spread, even if they come from very diverse types of
galaxies
Solution: new high resolution simulations, like EAGLE, have been able to repro-
duce features of the rotation curves of galaxies within CDM include several
baryonic effects (like star formation, stellar evolultion, metal enrichment, gas
cooling/heating, galactic outflows and BH feedback)

2.5.2 Bose-Einstein condensates and Super-fluids
Bose-Einstein condensation (BEC) occurs when a large fraction of bosons occupy
the lowest energy state at extremely low temperatures, leading to the formation
of a coherent macroscopic wavefunction that describes the entire system. This
quantum mechanical phenomenon is marked by long-range coherence, where
the wave nature of particles dominates, resulting in the condensation of bosons
into a single quantum state.
Superfluidity, closely related to BEC, is a state of matter where a fluid flows without
viscosity, allowing it to move frictionlessly. This behavior emerges when the quan-
tum properties of particles lead to collective, coherent motion across the system.

In the context of ULDM, these concepts become crucial in understanding how
dark matter might behave on Galactic/ sub-galactic scales. ULDM, composed
of extremely light bosons, could form a BEC under certain conditions in the early
universe, leading to large-scale coherence and unique astrophysical phenomena.
If ULDM exhibits superfluidity, it could flow without resistance, impacting galaxy
formation and dynamics, and offering an explanation for dark matter’s elusive
properties in a novel way. The interplay between BEC and superfluidity in ULDM
models provides insights into the possible quantum nature of dark matter.

2.5.3 ULDM Model
The Upper bound is from the de Broglie wavelength of the ULDM particle is of the
size of the galaxy This translates to the condition that de Broglie wavelength of the
boson DM is larger than the inter-particle distance between each boson

ULDM presents masses that are very small cannot be produced thermally in the
early universe. Therefore, ULDM is a non-thermal relic of the Early Universe The
QCD axions and axion like particles (ALPs) can have similar Properties to Fuzzy Dark
matter

1. Fuzzy Dark Matter:
A gravitationally bounded scalar field model. In this model condensation
under the influence of the gravitational potential is achieved in galaxies
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Figure 2.14: ULDM classes map

where the quantum pressure counteracts the gravitational attraction.
One of its main candidates, where the DM is given by a light particle with m
= 10−22 eV. With a particle with this mass, the FDM model is known to be able
to solve some of the challenges from small scales that we discussed, and to
be in agreement with large scale observations.
Forms gravitationally bounded BEC in Galactic halos and this model has only
one free parameter, the mass of the FDM Particle.

2. Self-Interacting FDM:
A scalar field model, in the presence of gravity, with a 2-body self-interaction(or
higher). The presence of these weak interactions makes this model present
superfluidity upon condensation. This case is described by an interacting
BEC.
The presence of the interaction controls the stability of the core and this this
model presents a different phenomenology depending not only on the mass
of the particle, as for FDM, but given the strength and sign of the interaction.
This model has two free parameters.
For a repulsive interaction, the condensate has a long range coherence
and presents superfluidity. The 2-body case is characterized by having an
equation of state :

EoS, P α n2

3. Dark Matter SuperFluid:
This was proposed with the goal of reproducing the MOND empirical law on
small scales. Different than in the case of SIFDM, in order to reproduce MOND
it requires that the equation of state is given by

EoS: P α n3

The model is described using the Effective Field Theory of Superfluids
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Figure 2.15: Gross–Pitaesvkii equation for FDM and SIFDM, describes the evolution
of a wavefunction or a field.
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3. Axion Miniclusters and their Microlensing signal

3.1 Evolution of Axion Field

Two energy scales define the cosmological evolution of the axion field: the decay
constant, fa, and the mass, ma. Spontaneous symmetry breaking occurs when the
universe’s temperature cools to T ≤ fa. Breaking of the PQ symmetry following infla-
tion might result in topological defects and huge amplitude axion field fluctuations
on scales comparable to the horizon size.

Under smooth initial conditions, axion field evolution is governed by the Klein-
Gordon Equation for a spatially homogeneous axion field φa(t):

d2φ

dt2 +3H(t)
dφ

dt
+ma(T )2

φ = 0 (3.1)

Figure 3.1: Evolution of the Axion Field (by Manish Tamta)
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The next important epoch in the field evolution is when the Axion mass becomes
cosmically relevant t0 is (also sometimes called tosc or Tosc), given by:

3H(t0)≈ ma(T ). (3.2)

The evolution of the axion mass is given by:

ma(T > Tc) = ma,0

(
T
Tc

)−n

; ma(T < Tc) = ma,0 ≡ ma. (3.3)

The index n parameterizes the sharpness of the phase transition at temperature Tc,
and n ≤ 6 which comes from the lower bound on ma.The QCD axion has a known
temperature-dependent mass with n = 3.34 from the “interacting instanton liquid”
model for the QCD topological susceptibility, which is consistent with the results
from lattice simulations (n ≈ 3.55±0.30),
The critical temperature Tc ≈

√
ma fa. For the QCD axion, Tc ≈ ΛQCD ≈ 200MeV ≈

2.5
√

ma fa. In the case Tc ≫
√

ma fa, which occurs for some axion-like particles, (it is
equivalent to n = 0).

3.2 Axion Miniclusters

After t0, the density perturbations grow under gravity as usual, eventually collapsing
into the gravitationally bound objects known as miniclusters. The characteristic
minicluster mass, M0 is set by the total mass of axionic DM contained within the
horizon at time t0, given by

M0 = ρ̄a
4
3

π

(
π

k0

)3

(3.4)

where k0 is the comoving wave number associated with the horizon size at the
time t0, k0 = H (t0) = a(t0)H(t0) is the conformal Hubble rate and ρ̄a is the current
axion density

The minicluster characteristic density, ρMC, is another important quantity, since it
sets the typical radius of a minicluster, thus its concentration. The characteristic
density is given in terms of the initial overdensity parameter, δ , by:

ρMC = 40δ
3 (1+δ ) ρ̄a(zeq) (3.5)

Miniclusters, once initially formed, go on to merge into larger bound structures,
which can be called “minicluster halos,” or MCHs.
MCHs are small-scale structures; they are substructures within the larger-scale DM
halos formed by the scale invariant adiabatic initial conditions on large scales.

3.3 Constraining Minicluster Mass Function

Fixing the DM density ΩDMh2 = 0.12 determines an n-dependent relationship be-
tween ma and fa such that M0 = M0(ma,n).

For inflation theories, the empirical constraint on the cosmic microwave back-
ground tensor to scalar ratio of r 0.07 means that this scenario for symmetry
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breakdown is only viable for fa ≲ 8.21012 GeV.
This upper limit on fa allows us to get a non-trivial lower limit on ma for different n.

Before beginning with constraining the minicluster mass, we take a small detour to
revise an important concept, scaling of energy density with Universal expansion.

3.3.1 Universal Expansion
The Friedmann equations are fundamental equations in ΛCDM cosmology, describ-
ing the expansion of the universe by defining a scale factor, a(t).

H2 =

(
ȧ
a

)2

=
8πG

3
ρ − k

a2 +
Λ

3
(3.6)

ä
a
=−4πG

3

(
ρ +

3p
c2

)
+

Λ

3
(3.7)

These can be solved using equations of state relating the p and ρ, for the more
dominant component at a time: radiation, matter or the Cosmological constant.

Remember that as the Universe expands, it cools adiabatically and thus the
Temperature of the Universe (Relativistic components) drops. So the scale factor
can also be related to temperature by the condition of constant Entropy, given by:

a(T ) ∝ (g⋆,S(T ))
−1/3 T−1 (3.8)

and also in a Radiation dominated era:

H(T )2 =
π2

90M2
PL

g⋆,R(T )T 4 (3.9)

Figure 3.2: g⋆,S(T ), g⋆,R(T ) obtained from approx. fits provided in Wantz and Shellard
(2010)

3.3.2 Calculating Tosc

From Eq.(3.2):

3H(Tosc) = ma(Tosc)

Now using Eq.(3.3) and Eq. (3.9), we can obtain Tosc for different values of ma
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Figure 3.3: Tosc vs ma & fa for n: [0, 3.34, 6] with an assumed constant phase
transition temperature: Tc = 2.5

√
ma fa = 0.2 GeV. We also impose the upper bound

on fa, left to which are scenarios not viable to form Miniclusters

3.3.3 Relating Fa and ma

Axion oscillations begin at temperature Tosc when the potential term dominates
over the friction provided by the Hubble expansion.
Once axion oscillations begin, the axion number density na(T ) = ρa(T )/ma(T ) be-
comes conserved(for slow ma variation).The axion relic density at a later time, when
the temperature is T0 is then given by

ρ
mis
a = ma(T0)n(Tosc)

(
a(Tosc)

a(T0)

)3

=
1
2

ma(T0)ma(Tosc) f 2
a θ

2
i

(
a(Tosc)

a(T0)

)3

With the assumption of constant g during the epoch over which anharmonic
corrections affect Tosc, this solution can be found analytically, leading to an anhar-
monic correction to the relic density:

ρ
mis
a → fan(θi)ρ

mis

In the minicluster scenario the vacuum misalignment relic density must be av-
eraged overθi, reflecting the fact that the current observable Universe is many
times larger than the horizon size when axion oscillations begin. One must replace
θ 2

i fan(θi) by

⟨θ 2
i fan(θi)⟩=

1
2π

∫
π

−π

θ
2 fan(θ)dθ ≡ can

π2

3

for the cosine potential and n = (0, 3.34, 6), we find cn = [2.7, 2.1, 2.0],
and since

Ωa =
ρa

3H2M2
pl

and Ωah2 = (1+αdec)Ω
mis
a h2
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where αdec = 2.48, computed from the numerical solution of the decay of the
axion string-wall network

Now, combining the mentioned equations, we finally reach:

Ω
a
total =

1
6H2

0 M2
pl
(1+αdec) ·

canπ2

3
·ma(TCMB) ·ma(Tosc)×

(
a(Tosc)

a(TCMB)

)3

· f 2
a (3.10)

Figure 3.4: The axion relic density contours Ωah2 = 0.12 are shown for various n.
Solid (dashed) lines have αdec = 2.48(1) and can = cn(1). The black line indicates the
upper limit fa = 8.2×1012 GeV.
This plot is a reproduction of Figure 19 in Fairbairn. et. al. PRD 97, 083502 (2018)

3.3.4 Calculating Minicluster Mass

Now Knowing the fa to ma relation, we can finally find the Mass of Axion miniclusters
on formation, M0, using Eq.(3.4).

First we calculate T0, which is the temperature that defines the time when the
axion field goes from having an equation of state w = 1 to w = 0, we take T0 ≈ Tosc.
using which we calculate k0 = H (t0) = a(t0)H(t0)

Thus we can finally plot The characteristic minicluster mass M0 as a function of the
axion mass ma for different temperature evolutions of the axion mass, parameter-
ized by index n.

We use ρ̄a = Ωa ×ρcrit .
and the critical density of the universe today, is taken to be ρcrit = 9.47×10−27.
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Figure 3.5: k0, this depends on the temperature evolution of the mass as
parametrized by n and on details of the relic density computation
This plot is a reproduction of Figure.3 in Fairbairn. et. al. PRD 97, 083502 (2018)

Figure 3.6: The characteristic minicluster mass: Solid lines show the most realistic
assumptions about the relic density, while dashed lines are relaxed slightly. When
ma is temperature independent(n = 0), the two cases are equivalent for M0. Lines
terminate at a lower bound on , set by figure 3.4
This plot is a reproduction of Figure.1 in Fairbairn. et. al. PRL 119, 021101 (2017)
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3.4 Mincluster Density Functions

The scale of miniclusters is determined by k0 ≪ kJ, implying that their density profiles
are expected to follow the cold dark matter (CDM) paradigm. The density profiles
that emerge from hierarchical structure formation in CDM are well described by
the well-known Navarro-Frenk-White (NFW) profile:

ρNFW(r) =
ρs

r
rs

(
1+ r

rs

)2 , (3.11)

where rs = ρcritδchar is the scale radius.

However, miniclusters closer to their characteristic mass are unlikely to form through
hierarchical structure formation but rather from a more direct collapse mechanism
as discussed. It has been proposed that a more appropriate profile for the initial
seed miniclusters could be described by self-similar infall (SSI) profile:

ρssi(r) = ρs

(rs

r

)9/4
(3.12)

Such a power-law profile has also been observed in minicluster N-body simulations.
For both the NFW and self-similar profiles, it is necessary to associate the density
ρMC with the characteristic density and also find an integration upper limit, rmax:

1. In the case of the NFW profile, we simply equate ρMC = ρcritδchar = ρs as men-
tioned above and rescale rs to obtain the correct mass of the halo at rmax.
We make the approximation that the NFW profile is cut off at a radius rmax =
100rs.

2. The situation is slightly more complex for the self-similar profile due to the
degeneracy between rs and ρs caused by scale invariance. The total mass
of a halo truncated at a radius rmax is given by

M =
16π

3
ρs · r9/4

s · r3/4
max ≡

4π

3
ρav · r3

max (3.13)

with an average density of

ρav = 4ρs

(
rs

rmax

)9/4

and then identify ρav = ρMC, We can express rmax as

rmax =

(
3M

4πρMC

)1/3

and ρs · r9/4
s =

1
4

ρMC · r9/4
max (3.14)

3.4.1 Surface Density Profile Σ(R)

The surface density Σ(R) is the projection of the 3D density profile ρ(r) onto a 2D
plane. It is obtained by integrating the 3D density ρ(r) along the line of sight
(perpendicular to the plane).
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The surface density Σ(R) can be calculated by:

Σ(R) = 2
∫ √

R2
max−R2

0
ρ

(√
R2 + z2

)
dz (3.15)

where R is the 2D radial coordinate, and z is the line-of-sight coordinate. For each
value of R, We integrate the 3D density profile along the line of sight from z = 0 to
z =

√
r2
max −R2.

3.4.2 Cumulative Mass Profile M(< R)

The cumulative mass M(< R) is the total mass enclosed within a radius R in the
projected 2D plane.
The cumulative mass M(< R) is given by:

M(< R) = 2π

∫ R

0
Σ(R′)R′ dR′ (3.16)

where 2πR′Σ(R′) is the Mass inside the Ring with radius R′+dR′

This integral sums up the mass within concentric rings of radius R′ to give the total
mass inside R.

Figure 3.7: The Minicluster Density, Surface Density and Cumulative Mass functions
for NFW and SSI Density Profiles as a function of radius r from the center of the
Minicluster. The minicluster has a total mass of 10−9M⊙. The SSI Cumulative mass
Function has some errorand does not end at the desired total mass.
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3.5 Theroetical uncertainties in the MCH mass function and analytic results

We will address three theoretical uncertainties in our modelling of the MCH mass
function:

(i) The initial power spectrum to model the effects of the Kibble mechanism,
P(k0,τ0)

(ii) The filtering function to define the mass variance, W (kR)
(iii) The cutoff of the mass function

We define the mass: M = (2π)3/2ρ̄a,0R3 and compute the variance, σ2(M), at the
initial time, τ0. We consider two simplified models for the initial power spectrum:

PG(k) = P0,G exp

[
−1

2

(
k
k0

)2
]
, P0,G =

8
√

2
5

π
3/2k−3

0

PH(k) = P0,HΘ(k0 − k), P0,H =
24
5

π
2k−3

0

with G for Gaussian and H for Heaviside. In addition to the power spectrum, we
also consider two choices of window function:

W 2
G(kR) = e−k2R2

W 2
H(kR) = Θ(1− kR)

For all combinations of initial power and window function the variance can be
expressed analytically, in terms of error functions where necessary. We write the
variance as σ2

XY , where X and Y take on either of the values G and H, with X
labeling the window function and Y labeling the initial power spectrum using:

σ
2(R) =

∫ dk
k

k3P(k)
2π2 |W (kR)|2

We consider the formation of gravitationally bound structures from linear density
perturbations using the analytic Press-Schechter formalism. The quantity δc is the
critical overdensity threshold for gravitational collapse and plays a key role in the
Press Schechter formalism. In spherical collapse of cold dark matter it is given by
δc ≈ 1.686, and it is scale independent.
For every point in space, the probability to have δ > δc using the filtered version of
δ by WM is

p(δ > δc|WM) =
1
2

(
1−erf

(
δc√

2σ(M)

))
If n(M) is the number density of structures of mass M, then the halo mass function
(HMF), defined by

dn
d lnM

=
1
2

ρ̄a

M

∣∣∣∣d lnσ2

d lnM

∣∣∣∣
√

2
π

δc

σ
exp

[
−1

2

(
δc

σ

)2
]

We also fit half-mode cutoff:

dn
d lnM

→

[
1+

(
2.4M
M1/2

)−1.1
]−2.2

dn
d lnM

We obtain the following plots for the RMS mass fluctuations, and Press-Schechter
mass function:
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Figure 3.8: Theoretical modeling of the rms. The mass fluctuation, σ , is shown as
a function of mass for four different combinations of initial power spectrum and
window function. The Gaussian initial power cuts off power earlier than the step
function. The Heaviside window function leads to a more pronounced flattening
of σ at low masses. The reduced mass M̃ = Mk3

0/ρ̄a.

Figure 3.9: Theoretical modelling of the mass function. The minicluster mass function
is shown as a function of mass for four different combinations of initial power
spectrum and window function. In this case of the Gaussian window function, we
also show the uncut (solid) and half-mode (dashed) models for the low-mass cutoff.
The reduced mass M̃ = Mk3

0/ρ̄a.
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