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1. Binary Star Systems

A binary star or binary star system is a system of two stars that are gravitationally
bound to each other and orbit a common centre of mass called a barycenter.

1.1 Historical Significance

Figure 1.1: Mizar and Alcor in constellation Ursa Major

Double stars or visual doubles, a pair of stars that appear close to each other, have
been observed since the invention of the telescope. Early examples include Mizar [1.1] and
Acrux [1.2]. Evidence that stars in pairs were more than just optical alignments came in
1767 when English natural philosopher John Michell became the first person to apply
mathematics and statistics to the study of the stars (Michell, 1767). He focused his
investigation on the Pleiades cluster and calculated that the likelihood of finding such a
close grouping of stars was about one in half a million. He concluded that the stars in
these double or multiple-star systems might be drawn to one another by gravitational pull,
thus providing the first evidence of binary stars and star clusters. William Herschel began
observing double stars in 1779, and by 1803,(Herschel, 1802) he had observed changes
in the relative positions of several double stars over 25 years and concluded that the
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Figure 1.2: α crucis with its close companion HD 108250 (the 2nd brightest star)

stars were orbiting each other and coined the term binary star for stars exhibiting orbital
motion towards each other. The first orbit of a binary star was computed by Félix Savary
in 1827.

In recent years, there have been numerous double stars that have been cataloged and
measured. As of June 2024, the Washington Double Star Catalog, a database of visual
double stars compiled by the United States Naval Observatory, contains over 150,000 pairs
of double stars, including optical doubles and binary stars. Orbits have been determined
for only a few thousand of these double stars. Gaia Data Release 3 (Gaia DR3) has been
released on 13 June 2022. DR3 included astrometric orbital solutions for 168,065 sources,
including 134,598 with purely astrometric solutions and 33,467 joint astrometric + RV
solutions, orbital solutions based purely on RVs for 181529 single-lined binaries and 5376
double-lined binaries. DR3 also included a sample of short-period binaries displaying
photometric variability, including both eclipsing and ellipsoidal systems 86,918 sources
have pure light curve solutions, while 155 have joint light curve + RV solutions (El-Badry,
2024). About 16,000 resolved white dwarf (WD) + main sequence (MS) binaries and
1,500 WD+WD wide binaries have been identified from Gaia data.

1.2 Classifications
Binary stars are categorized into four distinct types based on their method of observation:
visually, through direct observation; spectroscopically, by detecting periodic variations
in spectral lines; photometrically, through changes in luminosity caused by an eclipse;
astrometrically, by measuring a deviation in star’s position caused by an unseen companion.
It is noteworthy that a binary star system may fall into multiple categories for instance,
several spectroscopic binaries also exhibit characteristics of eclipsing binaries.

• Visual binaries are binary stars in the sky that are seen as a single object and often
resolved using a telescope as separate stars. They are usually close to Earth and
have a large orbital separation between the two components to permit them to be
observed as a double star in a telescope. The double star Castor was found to be a
visual binary system with a separation of 3.9" and a period of 467 years (Heintz,
1988).

• Spectroscopic binaries consist of a pair of stars where the spectral lines in the light
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Figure 1.3: The observed combined spectrum shows the shifting of spectral lines.

emitted from each star shift first towards the blue indicating the motion towards the
observer, then away from us by shifting towards the red [1.3]. In these systems, the
separation between stars is usually very small. The observed radial velocity of the
system varies periodically due to orbital motion. Radial velocity can be measured
with a spectrometer by observing the Doppler shift of the star’s spectral lines. In
some spectroscopic binaries, spectral lines from both stars are visible. In these cases,
the lines alternate between being double and single. This type of system is known
as a double-lined spectroscopic binary (SB2). In other systems, only one star’s
spectrum is visible, and it periodically shifts towards the blue, then towards the
red, and back again. Stars in these systems are known as single-lined spectroscopic
binaries (SB1).

• An eclipsing binary star is a binary star system in which the orbital plane of
the two stars lies in the line of sight of the observer, causing the components to
undergo mutual eclipses. Eclipsing binaries are variable stars not because the light
of individual components varies, but because of the eclipses. The light curve of
an eclipsing binary is characterized by periods of practically constant light, with
periodic drops in intensity when one star passes in front of the other. These are the
main focus of our study in the following sections.

• Astrometric binaries are stars that are relatively close and can be observed to wobble
around a point in space, with no visible companion. This companion could be very
faint, making it currently undetectable or obscured by the brightness of the primary
star, or it could be an object that emits minimal or no electromagnetic radiation.

1.3 Importance in Astrophysics
From observations of the motion of one of the stars relative to the other, it is possible
to determine several of the properties of the orbit orbital period (P) orbital eccentricity
(e) the argument of periastron (ω) semi-major axis (a) (Table ??). The semimajor axis
(a) that can be found is angular size, not the true length. The properties such as the
argument of periastron (ω), the longitude of ascending node (Ω), and orbital inclination (i)
can also be measured, as these define the orientation of the orbit relative to the observer.
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Hence, these are collectively known as Orbital Parameters.
For a "single-lined" spectroscopic binary system (SB1), we can measure the quantities

P, e, ω, K1, Vγ (Table ??). From these values, we can calculate the mass function f(M)
and a component of the semi-major axis (a1sini). For a "double-lined" spectroscopic binary
system, we can obtain all the quantities for SB1 systems and, in addition, the minimum
masses (M1sin

3i and M2sin
3i), as well as a component of the semi-major axis (asini).

However, without knowing the orbital inclination, the true values of these quantities are
not accessible.

Eclipsing binaries are particularly valuable in the study of binary stars because they
allow for the precise measurement of various physical properties. By analyzing the light
curve of an eclipsing binary, we can determine its orbital period, as well as the relative
sizes of the individual stars in terms of their radii. For SB2 EBs, it is possible to measure
the masses, radii, and luminosities of both stars, provided they have not undergone
mass transfer and evolved as single stars. This information is crucial for calibrating the
theoretical stellar models.

1.4 Origins and Fate

Figure 1.4: Graph illustrating the variation of gravitational potential energy (U) with
distance (r)

The origin of binary stars has long been one of the central problems of astronomy.
While it is not impossible that some binaries might be created through gravitational
capture between two single stars, given the very low likelihood of such an event due to
potential energy barriers in their self-gravitating systems. The potential energy curve
[1.4] typically exhibits a minimum point at a certain separation distance rmin, stars need
to overcome this potential energy barrier to get close enough for gravitational capture
to occur. At large distances (far from each other), the potential energy is positive and
decreases towards zero as stars approach rmin. However, for stars to capture each other
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gravitationally, they must reach distances where their potential energy is sufficiently
negative to facilitate binding, which is typically not achieved in systems involving two
isolated stars. Given the high number of binaries currently in existence, this cannot be
the primary formation process.

There are several prominent theories of binary and multiple star formation in the
literature. The following are the commonly accepted mechanisms (Kratter, 2011).

Figure 1.5: Some commonly accepted binary-star formation mechanisms

1. Turbulence Fragmentation: In a turbulent cloud, the non-linear perturbations
expected can lead to certain sub-regions within a dense core becoming exceptionally
over-dense. These over-dense areas collapse more rapidly than the typical free-fall
timescale of the surrounding core material, resulting in the formation of secondary
condensations within the core. Alternatively, the turbulence can stretch the gas and
dust into filamentary structures, which subsequently fragment into multiple objects.
These objects, or proto-stars, then accrete material from their natal core mostly
independently. Recent studies by Offner et al (Offner u.a., 2010) have demonstrated
that turbulent fragmentation is the predominant mechanism for the formation of
binary systems in radiation hydrodynamic simulations of low-mass (M < M⊙) star
formation.

2. Disk Formation: Models explaining the formation of binary and multiple star
systems at a slightly advanced evolutionary stage focus on protostellar disks, which
are rotating disks of gas and dust around young newly formed stars. According
to the disk fragmentation model (Bonnell, 1994), massive protostellar disks can
develop gravitational instabilities. When these disks become unstable, and the gas
cools effectively, they can fragment, forming one or more companions in the same
plane (coplanar) that accrete from the parent disk and potentially from the primary
star’s natal cloud, depending on the formation period. When disks are more massive
and undergo continuous accretion, simulations suggest that fragmentation may be
more common. In this case, secondaries are formed in the disk and quickly accrete
to match the primary’s mass. Observations of more massive disks support this,
indicating that disk fragmentation can result in a wide range of mass ratios. This
scenario is most relevant for systems with primaries more massive than the Sun,
although recent observations of young clusters suggest it might also apply to lower
mass systems (Kraus u.a., 2011).

3. Dynamic Formation: Recent studies (Bate u.a., 2003) have suggested that star
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clusters form through a dynamic process called competitive accretion. In this scenario,
a turbulent molecular cloud produces numerous clumps of gas, each approximately
at the Jeans mass. These clumps interact and compete to gather mass from the
surrounding cloud. Within this environment, binary stars can form through various
mechanisms, including the disk methods mentioned above, as well as dynamical
interactions between three or more bodies. Additionally, dynamical friction between
the protostars and background gas is thought to tighten wider binaries. Unlike the
scenarios listed above, the stellar system does not accrete from a fixed core but
rather migrates around in a collecting cloud.



2. Preliminaries

2.1 Celestial Co-ordinates, Celestial Sphere and Epochs
2.1.1 Celestial Co-ordinate

A widely used celestial coordinate system by astronomers is the equatorial coordinate
system. Essentially, it is the angular components of the spherical coordinate system
centered on Earth with the Earth’s rotational axis as the z-axis and the directional
location of the sun at the vernal equinox as the x-axis. The angular components are
expressed in terms of Declination (δ) and Right Ascension (α).

The Declination (δ) is the equivalent of latitude and ranges from 90◦ at the north
celestial pole to -90◦ at the south celestial pole. δ = 90◦ − θ where θ is a polar coordinate.

The Right Ascension (α) is the equivalent of longitude; due to the rotation of the
celestial sphere, it is measured in time (hours, minutes & seconds) you would have to wait
from the point that the vernal equinox crosses the meridian until the object of interest
crosses the meridian α = ϕ/15◦ where ϕ is a polar coordinate.

Figure 2.1: Celestial Coordinate



16 Chapter 2. Preliminaries

2.1.2 Epochs
Due to precesion the vernal equinox moves at about 50.26′′ /year westward along the
ecliptic, and an additional 0.12′′/year due to the earth planet interactions. Therefore,
when we give the equatorial coordinates for an object, we must also give the time period
for which those coordinates are valid. This time periods are called Epochs, which are
generally less than about 50 years. For example, Epoch J2000 began on 1st Jan of the
year 2000. For taking an observation from a telescope in the correct direction N years
after begning of an epoch we need to adjust the coordinates.the correction is linear in N
and is given by

∆α = (m+ nsinαtanδ)N
∆δ = (ncosα)N

where m = 3.075 s/year and n =1.366 s/year = 20.043”/year For J2000.

2.1.3 Celestial Sphere
A consequence of astronomy being an ancient science is that many conventions are derived
from old concepts. In this case, all stars are stuck on a sphere called the Celestial Sphere,
which surrounds the Earth and rotates around a fixed Earth on a sidereal day. But we
now know that is not true and that neither Earth nor the stars are fixed on the Celestial
Sphere; instead, the stars themselves move through space.

2.2 Fluxes, Magnitudes, and luminosity
2.2.1 Magnitude

Due to the obvious fact that some stars are brighter than others, a ranking scheme for
measuring the brightness of stars was developed in classical times using the human eye
as a photon detector. The scale used by Hipparchus ranked the brightest stars at the
first magnitude (m = 1), the dimmest stars that he could see at the sixth magnitude
(m = 6),Benacquista (2013). In this ranking scheme, brighter stars have lower magnitudes,
resulting in the brightest objects now having negative magnitudes. The magnitude scale
is based on the human eye, which is logarithmic and could be well approximated where a
difference of five magnitudes corresponded to a factor of 100 in brightness.

2.2.2 Radiant flux and luminosity
Radiant flux is the amount of light energy deposited per unit area per unit time.If we
define the radiant flux (I) and magnitude for star 1 as I1 and m1 and for star 2 as I2and
m2, then

I2

I1
= 100(m1−m2)/5

The luminosity (L) of an object is the total radiated power. We can relate the radiant
flux to the luminosity and distance by the inverse square law of light

I = L

4πd2

2.2.3 Absolute magnitude
In the magnitude scale, no consideration of the distance to the star is taken, resulting in
two identical stars having different magnitudes if they are at different distances; therefore
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(a) Gravitational force b/w two bodies (b) Barycentric co-ordinate system

We define the Absolute magnitude (M) to be the magnitude (m) that the star would
have if it were placed at a standard distance away, which is 10 parsecs, then

M = m− 5log( d

10 pc)

2.2.4 Distance modulus(µ)
µ = m−M = 5[log10(d) − 1]

The Distance modulus (µ) is constant for a cluster of stars that are all at roughly the
same distance and thus can be added to each measured magnitude to obtain the absolute
magnitudes.

2.3 The 2-Body Problem
We shall determine the equation of motion for the motions of two bodies interacting via a
gravitational force (two-body problem) using the force method.

2.3.1 Reducing the Two-Body Problem into a One-Body Problem
The motion of two bodies interacting via gravitational force can be modelled as a single
body acted upon by an external gravitational force, with the mass of that single body
equal to the reduced mass, µ

µ = m1m2

m1 +m2
(2.1)

• We will solve for the motion of this reduced body and later using the
results, derive the motion for individual bodies.

We begin by considering the binary star in a Barycentric co-ordinate system, i.e., the
Center of Mass frame of reference[2.2b]. Here,

m1r⃗1 +m2r⃗2 = 0
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Figure 2.3: Co-ordinate system for orbit of single body

and therefore,

m1r1 = m2r2

Since the relative separation, r⃗ = r⃗1 − r⃗2,

r⃗1 = m2

M
r⃗ r⃗2 = −m1

M
r⃗ (2.2)

where M = m1 +m2 Now, using Newton’s second law individually for the two bodies,

F⃗2,1 = m1
d2r⃗1

dt2
; F⃗1,2 = m2

d2r⃗2

dt2

Dividing by the respective masses and subtracting the two equations,

F⃗2,1

m1
− F⃗1,2

m2
= d2r⃗1

dt2
− d2r⃗2

dt2
= d2r⃗

dt2

Using Newton’s third law,

F⃗2,1
m1 +m2

m1m2
= d2r⃗

dt2

i.e.,

F⃗2,1 = µ
d2r⃗

dt2
(2.3)

We can interpret this result as if there is a single body of mass µ with position vector
r⃗ w.r.t. origin. We will now define an r − θ co-ordinate system to describe the motion of
this single body[2.2a][2.2b]. First we will find the distance from the origin, r, as a function
of the angle from the x-axis in the counterclockwise direction, θ, i.e., r(θ). Later on, we
will find r(t) and θ(t).
Now, the constants in this motion are:

• Total Energy (C): Since the gravitational force is an internal conservative force,
the total energy of the system remains constant.
Since force is conservative, the potential energy ( assuming U(∞) = 0 is given by

U(r) = −Gm1m2

r
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Since we are working in the COM frame[2.2b], the kinetic energy is given in terms of
the relative speed, v, of the two bodies.

v⃗ = dr⃗

dt
= dr

dt
r̂ + r

dθ

dt
θ̂

where θ = θ1 = θ2 − π. Thus, the total energy is given as

C = 1
2µv

2 + U(r)

=⇒ 1
2µ

(
dr

dt

)2

+ 1
2µr

2
(
dθ

dt

)2

− GµM

r
= C (2.4)

• Angular Momentum (J): The angular momentum is constant about the origin as
the only force acting is itself directed towards the origin, and hence the net-torque
on the system is zero. The angular momentum w.r.t. the origin is given by

J⃗ = r⃗ × µv⃗ = rr̂ × µ(vrr̂ + vθθ̂) = µrvθk̂

J = µr2dθ

dt
(2.5)

We can re-write the equation for total energy as

C = 1
2µ

(
dr

dt

)2

+ 1
2
J2

µr2 − GµM

r
∵
dθ

dt
= J

µr2 (2.6)

2.3.2 Determining the orbital shape, r(θ)
We will do some clever substitutions in Eq. (2.6) as follows:

C = 1
2µ

(
dr

dt

)2

+ 1
2
J2

µr2 − GµM

r

• First substitution:

u = 1
r

(2.7)

=⇒ dr

dt
= −1

u2
du

dt

= −r2du

dθ

dθ

dt

= −J
µ

du

dθ
∵ J = µr2dθ

dt

Thus, the equation becomes

J2

2µ

(
du

dθ

)2

+ J2

2µu
2 −GµMu = C
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• Second substitution:

l = J2

Gµ2M
(2.8)

which implies J2

µ
= GMµl. Substituting J2

µ
into the equation, dividing by GMµ

2l and adding
1 to both sides, we get

l2
(
du

dθ

)2

+ l2u2 − 2lu+ 1 = 2Cl
GMµ

+ 1

• Third substitution:

e2 = 2Cl
GMµ

+ 1 (2.9)

• And the final substitution:

σ = lu− 1 (2.10)

Thus our equation finally becomes(
dσ

dθ

)2

+ σ2 = e2

=⇒ dσ

dθ
=

√
e2 − σ2

Integrating within limits,∫ σ

σ0

dσ√
e2 − σ2

=
∫ θ

θ0
dθ

arcsin
(
σ

e

)
− arcsin

(
σ0

e

)
= θ − θ0

We can observe that |σ| ≤ |e| in order for the arcsin to make any sense. We also define
θ0 = 0 and require σ0 = σ(0) = e to obtain

arcsin
(
σ

e

)
− arcsin (1) = θ − 0

=⇒ σ

e
= sin (θ + π/2) = cos (θ)

σ = e cos θ (2.11)

Reversing all substitutions,

r = l

1 + e cos θ (2.12)

This result Eq. (2.12) is called the orbit equation for the reduced body, where

l = J2

Gµ2M
, e =

√
2Cl
GMµ

+ 1
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We can express the constant quantities, J and C in terms of the described constants as

J =
√
µ2GMl (2.13)

C = GµM(e2 − 1)
2l (2.14)

The orbit equation as given in Eq. (2.12) is a general conic section and is
perhaps somewhat more familiar in Cartesian coordinates.
Let x = r cos θ and y = r sin θ, with r =

√
x2 + y2. The orbit equation can be written as

r = l − er cos θ

=⇒
√
x2 + y2 = l − ex

Squaring and rearranging the terms, we get a general expression for a conic section with
axis as the x-axis,

x2(1 − e2) + 2exl + y2 = l2 (2.15)
where e is the eccentricity of the conic and l is the semi-latus rectum of the
conic. Based on different values of eccentricity (or we can say based on the different
values of the two constants, Angular momentum (J) and the Total Energy
(C)), the orbits can be in the following four shapes:

Circular Orbit
When

• e = 0
• This implies the total energy, C = −Gm1m2

2l < 0.
In this case, the equation for the orbit becomes

x2 + y2 = l2 (2.16)
where l is the radius of the circular orbit. The radius l = r0 in this case and the energy
C = GµM

2r0
= Cmin.

Elliptical Orbit
When

• 0 < e < 1
• This implies the total energy, Cmin < C < 0.

In this case the equation for the orbit becomes
y2 + Ax2 −Bx = k (2.17)

where A, k > 0. This equation can be reduced to the standard equation for ellipse
(Appendix C of (Anchordoqui))

Parabolic Orbit
When

• e = 1
• This implies the total energy, C = 0.

In this case the equation for the orbit becomes

x = y2

2r0
− r0

2 (2.18)

This is the equation of a standard parabola.
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Hyperbolic Orbit
When

• e > 1
• This implies the total energy, C > 0.

In this case the equation for the orbit becomes

y2 − Ax2 −Bx = k (2.19)

where A, k > 0. This is the equation of a standard hyperbola.
Summarising the four cases, we have:

Orbit Type Eccentricity (e) Total Energy (C) Equation

Circular e = 0 C = Cmin = −Gm1m2
2l < 0 x2 + y2 = l2 = r2

0

Elliptical 0 < e < 1 Cmin < C < 0 y2 + Ax2 −Bx = k

Parabolic e = 1 C = 0 x = y2

2r0
− r0

2

Hyperbolic e > 1 C > 0 y2 − Ax2 −Bx = k

Table 2.1: Characteristics and Equations of Different Orbital Types

2.4 Using the 1-body analysis to solve the original 2-body problem
Referring to Eq. (2.2), we can say that

r1 = µ

m1
r and r2 = µ

m2
r

Thus, using Eq. (2.12), we can say that

r1 = µl/m1

1 + e cos θ

r2 = µl/m2

1 + e cos θ
Defining l1 = µ

m1
l and l2 = µ

m2
l, we can see that the following equations

r1 = l1
1 + e cos θ r2 = l2

1 + e cos θ (2.20)

are similar to Eq. (2.12), with only the latus-recta of respective masses’ orbits multiplied
by a factor of µ

mi
and eccentricity remaining the same.

Thus we can say that the orbits of individual bodies are also similar to the
hypothetical 1-body case with the origin being at the center of mass of the
system and the latus-rectum (l) changed by a factor of µ

mi
.
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2.5 Kepler Laws and Elliptical Orbits
2.5.1 Kepler’s Laws

Kepler’s laws of planetary motion describe the motion of planets around the sun. These
laws were formulated by Johannes Kepler in the early 17th century based on the observa-
tions of Tycho Brahe. The three laws are:

1. Kepler’s First Law - The Law of Orbits: All planets move about the Sun in
elliptical orbits, with the Sun at one of the foci. The point at which the planet is
closest to the Sun is called perihelion, and the point at which it is farthest is called
aphelion.

2. Kepler’s Second Law - The Law of Equal Areas: The radius vector drawn
from the Sun to a planet sweeps out equal areas in equal lengths of time. This
means that the planet moves faster when it is closer to the Sun and slower when it
is farther away.

3. Kepler’s Third Law - The Law of Periods: The square of the time period
of a planet’s revolution around the Sun is directly proportional to the cube of its
semi-major axis. This means that the orbital period of a planet is longer for orbits
with larger semi-major axes.

2.5.2 Properties of elliptical orbits and orbital elements
An elliptical orbit is a Kepler orbit with an eccentricity of less than 1. It is characterized
by several key properties:

1. Eccentricity: The eccentricity of an elliptical orbit is less than 1, which means
that the orbit is not a perfect circle but is rather an oval shape. The eccentricity is
a measure of how much the orbit deviates from a circle.

2. Shape: The shape of an elliptical orbit is an ellipse, which is a closed curve that is
symmetrical about its center. The orbit is stretched out in one direction, resulting
in an oval shape.

3. Energy: The total energy of an elliptical orbit is negative, which means that the
orbit is bound and the object will not escape the gravitational pull of the central
body.

4. Orbital Period: The time it takes for an object to complete one orbit around the
central body is known as the orbital period. For elliptical orbits, the orbital period
is related to the semi-major axis of the orbit, and it is longer for orbits with larger
semi-major axes.

5. Velocity: The velocity of an object in an elliptical orbit varies as it moves along the
orbit. The velocity is highest at the point closest to the central body (perihelion)
and lowest at the point farthest from the central body (aphelion).

6. Focus: In an elliptical orbit, the central body is located at one of the foci of the
ellipse. The other focus is empty, and the object moves along the ellipse with the
central body at one of the foci.

7. Angular Momentum: The angular momentum of an elliptical orbit is constant,
which means that the product of the object’s mass, velocity, and distance from the
central body remains constant throughout the orbit.

8. Orbital Elements: The state of an elliptical orbit can be described using six orbital
elements: semi-major axis, eccentricity, inclination, longitude of the ascending node,
argument of periapsis, and mean anomaly. These elements define the shape and
orientation of the orbit.
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These properties are crucial in understanding the behavior of objects in elliptical orbits.
The Orbital Elements

Observed binaries do not lie in the plane of the sky, so we need to describe the orientation
of the binary using the orbital elements. These are defined in terms of both the total
angular momentum vector J and the total energy of the orbit. The orientation of the
binary can be described in terms of the direction of the total angular momentum vector
and the direction of the periastron, which give the z- and x-axes in the orbital plane,
respectively. These directions are measured relative to a coordinate system that is defined
by the tangent plane to the celestial sphere at the location of the binary. A Cartesian
coordinate system is defined in terms of the line of sight to the binary from the observer
and the tangent to a great circle joining the binary to the north celestial pole. The angle
of inclination is defined as the angle between the plane of the orbit and the tangent plane
to the celestial sphere. The ascending node (N ) is the line defined by the intersection of
the plane of the orbit and the tangent plane and points in the direction where the binary
passes from inside the celestial sphere to outside the celestial sphere. Figure 2.4 shows
the orientation of the orbit relative to the tangent plane and the three angles that define
this orientation. These three angles are -

• Angle of Inclination i
• Longitude of the ascending node Ω
• Longitude of the periastron ω

The shape of the orbit is then given by three quantities:
• Semimajor Axis a
• Eccentricity e
• Time of Periastron T

These six quantities are called the orbital elements. If the orbital elements can be
measured, then the masses of the binary can be determined. The orbit will always appear
to be an ellipse when viewed on the sky, but unless i = 0, the center of mass of the system
will not lie at the focus of this apparent ellipse. The angular momentum and total energy
are also related to the orbital period and orbital shape. To obtain these relations we begin
by noting that the kinetic energy is

K = 1
2m1v

2
1 + 1

2m2v2
2 = 1

2µv
2

where v2 = ṙ2 + r2θ̇2 and r and θ are relative separation variables. Now, using r =
l/(1 + e cos θ), we find that

ṙ = θ̇
r2

ℓ
e sin θ = L

ℓ
e sin θ

and

rθ̇ = r2θ̇

r
= L

r
= L

ℓ
(1 + e cos θ)
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. From here we get

v2 =
(
L

ℓ

)2 [
e2 sin2 θ + 1 + 2e cos θ + e2 cos2 θ

]
=
(
L

ℓ

)2 [
e2 + 1 + 2e cos θ

]
=
(
L

ℓ

)2 [
2(1 + cos θ) − 1 + e2

]
=
(
L

ℓ

)2 [2ℓ
r

− (1 − e2)
]

=
(
L2

ℓ

)[
ℓ

r
− 1 − e2

ℓ

]

=
(
L2

ℓ

) [2
r

− 1
a

]
where we have used a = l(1 − e2) in the last step. Now from Kepler’s second law, we

have L = 2πab/P , where P is the orbital period. Noting that b2 = a2(1 − e2) we find

L = 4π2a2b2

P 2 = 4π2a3

P
a(1 − e2)

= GMa(1 − e2)
= GMℓ

where we have used Kepler’s third law. Finally we have

v2 = GM
[2
r

− 1
a

]
and so the kinetic energy is

K = 1
2µv

2 = 1
2
m1m2

M
GM

[2
r

− 1
a

]
= Gm1m2

r
− Gm1m2

2a
Now, the potential energy is Ω = −Gm1m2/r, so the total energy is

C = K + Ω = −Gm1m2

2a
The total angular momentum is J = m1L1 +m2L2, where

L1 = m2
2

M2L

L2 = m2
1

M2L

L2 = GMa(1 − e2)

This gives:

J = 1
M2 (m1m

2
2 +m2m

2
1)
√
GMa(1 − e2)

= m1m2

√
Ga(1 − e2)

M

= 2π
P

m1m2a
2√1 − e2

M

Thus the total energy is fixed by the masses and the semimajor axis, while the total
angular momentum also depends upon the period and the eccentricity.
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Figure 2.4: Derivation of the eccentric angle time-dependence

2.5.3 Motion of the star system with time
To derive the time-dependence of the eccentric anomaly, E, as shown in the figure Fig.
(2.4) (where θ is the true anomaly), we use the geometry of ellipse.
Applying trigonometry in ∆PRS in Fig. (2.4)

PR = r sin θ

Also since PR = a
√

1 − e2 sinE (co-ordinate geometry of ellipse),

sin θ =
√

1 − e2

1 − e cosE sinE (2.21)

Differentiating w.r.t. E,

cos θ dθ
dE

=
√

1 − e2 cosE − e

(1 − e cosE)2

Now, since r cos θ = −RS = OS −OR,

r cos θ = a cosE − ae

Substituting the value of cos θ from here into the equation,

dθ

dE
=

√
1 − e2

1 − e cosE

Also, dθ = J
µr2dt from Eq. (2.5), substituting dθ and integrating,

∫ t

T

J

µa2
√

1 − e2
dt =

∫ E

0
(1 − e cosE) dE

Thus,

E − e sinE = L

ab
(t− T ) (2.22)
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where T = time when the body passes through periastron, L = specific angular momentum(
J
µ

)
, b = semi-minor axis. Also,

r2dθ = Ldt∫ 2π

0
r2dθ = L

∫ T+P

T
dt ,where P is the period of revolution

2πab = LP

Thus,

L

ab
= 2π

P
= ω (2.23)

Hence we can alternatively write Eq. (2.22) as

E − e sinE = 2π
P

(t− T ) (2.24)

We can compute the value of E at any given point of time, with the help of orbital
parameters.
Also, using Pythagoras theorem in right angled ∆PRS, we get

r = a(1 − e cosE) (2.25)

And, we have Eq. (2.21) as a relation of θ in E.
Thus, using computational methods, we can caculate r and θ at any time t.
And as discussed in section (2.4), we can use the results to determine the required values
for individual bodies.





3. Spectroscopic Binary Stars

So far we have seen some of the basics and motivations1 behind studying binaries in
Chapter 1 and discussed celestial mechanics in detail (Ch. 2). Of the three classes of
binary stars discussed in Ch. 1: astrometric, spectroscopic and eclipsing, we will give a
detailed overview of spectroscopic binaries in this chapter.

3.1 Introduction
The first visual binary to be discovered was Mizar (ζ U Ma) and the discovery is often
attributed to the Italian astronomer J. B. Riccioli who discovered it in around 1650
(Burnham, 1978). However, its earliest records can be found in the letter of Castelli
to Galileo, and Galileo’s own record of it dated post Castelli’s letter (Mamajek u.a.,
2010; Siebert, 2005). Astrometric/visual binaries are great laboratories for scientists.
However, when the component stars of a binary system are close enough to not be
spatially resolved, we need some other pathways to study the binaries. One such pathway
is offered by studying the periodic movements of the spectral lines or the radial velocity
curves. Interestingly, one of the components of Mizar (ζ U Ma) was also the first one
to be discovered in a binary using this technique. It was discovered by E. C. Pickering
at the dusk of the nineteenth century. However, three months after its discovery, H. C.
Vogel found that Algol (first eclipsing binary discovered in 1782 by Goodericke) was also
a spectroscopic binary (Batten, 1989). These binary systems are useful in measuring the
multiplicity fraction of the stars which varies as a function of age, mass and chemical
composition of the stars. This can be further used to probe star formation processes
(Merle, 2024; Duchêne u.a., 2013). The multiplicity rate and the distribution of the orbital
period are steep functions of the primary mass and the mass ratio distribution is flat
for most populations except for the lowest mass objects. Stellar multiplicity is a direct
outcome of the star-formation process and its trends can be compared to numerical and
analytical models of star formation. This shall allow us to refine our understanding of the

1Also see (Southworth, 2020, 2012) for more details.
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physical processes in star formation.
As the name suggests, spectroscopic binaries are studied using their spectra (Benac-

quista, 2013). Based on the observation of spectral data from a binary system, how can
one deduce that the spectra is from a binary system? We observe the spectra of a single
system over extended periods, known as long cadence observations. Each spectrum is
fitted, and significant lines, such as hydrogen and metal lines, are identified. Once these
lines are identified, we calculate their redshift or radial velocity. This process is repeated
for all spectra obtained during the long cadence period, which may span several days. We
then plot the radial velocity against time to examine the variability of the curve. If the
curve exhibits periodic variations, this indicates the presence of a binary system. Using
the periodic change in the wavelength of the two sets of spectrum lines due to the Doppler
effect over a sufficient period of time, some of the orbital characteristics can be thereby
extracted from the radial velocity curve. It might be possible that one of the components
is significantly brighter than the other, in which case, only one spectrum is observable. On
this basis, the spectroscopic binaries are classified into single-lined spectroscopic binaries
(SB1) and double-lined spectroscopic binaries (SB2), as discussed in Section 1.2.

Also note that the binary as a whole can have a velocity (referred to as the systemic
velocity Vγ) towards or away from the Sun. The spectra observations are with respect
to the Earth, and not the Sun. So, corrections must be made to the observed radial
velocities accounting for the motion of Earth around the Sun as well as around its own
axis of rotation.

3.2 The Radial Velocity Curve
3.2.1 Notations and definitions

We will refer to the center of mass of the binary system as C. The plane tangent to the
point C on the celestial sphere is referred to as the plane of the sky. The inclination angle
i is the angle between the orbital plane and the plane of the sky. It is also equal to the
angle between the position vector of C and the orbital angular momentum of the binary
system. S1 and S2 are the two stars of the binary system. We denote the semi-major
axis of the orbit of S1 about C as a1 and the eccentricity as e. The semi-latus rectum
l1 = a1(1 − e2). The true anomaly is denoted as θ. The specific angular momentum,
L1, of S1 about C is given L = r2

1 θ̇ =
√
GMl1, where, r1 is the distance of S1 from C,

and M = m3
2

(m1+m2)2 . The orbital period, P , is given by P 2 = 4π2

GM
a3

1. The mean motion
n (average angular speed) is 2π/P and thus, n2a3

1 = GM . We can therefore express the
specific angular momentum as

L1 = r2
1 θ̇ = na2

1
√

1 − e2. (3.1)

We denote the argument of latitude as Θ and the argument of periastron as ω. It follows
that Θ = ω + θ. The perpendicular distance of S1 from the plane of the sky is denoted as
z1. β is the angle between r1 and the line joining C and the point where the perpendicular
from S1 meets the plane of the sky. It then follows that

z1 = r1sin(β)
= r1sin(i)sin(ω + θ). (3.2)
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3.2.2 Radial velocity
The radial velocity V of S1 relative to the Sun is given by

V = Vγ + ż (3.3)

where Vγ is the systemic velocity and z = z1 as we are considering only one star currently.
The equation to ellipse is given by

r1 = l1
1 + ecos(θ)

= a1(1 − e2)
1 + ecos(θ) . (3.4)

Differentiating Eq. 3.2 and 3.4 and using Eq. 3.1, 3.4, we obtain

ż

sin(i) = na1(1 + ecos(θ))√
1 − e2

(
esin(θ)sin(ω + θ)

1 + ecos(θ) + cos(ω + θ)
)

(3.5)

or
ż

sin(i) = na1√
1 − e2

(esin(θ)sin(ω + θ) + (1 + ecos(θ))cos(ω + θ)) . (3.6)

Note that (esin(θ)sin(ω + θ) + ecos(θ)cos(ω + θ) = ecos(ω). So,

ż = K1 (cos(ω + θ) + ecos(ω)) (3.7)

where, K1 = na1sin(i)√
1−e2 and [K1] = [speed].

We can now express the radial velocity including the systemic velocity as a function
of true anomaly and elements as

V = Vγ +K1 (cos(ω + θ) + ecos(ω)) . (3.8)

It can be observed that K1 is the semi-amplitude of the radial velocity curve.
Eq. 3.8 gives us RV as a function of true anomaly θ and a few other parameters

discussed in detail further in Sec. 3.5. From the discussion in Section 2.5.3 it follows that
the true anomaly θ is related to the eccentric anomaly E, as

cos(θ) = cos(E) − e

a− ecos(E) (3.9)

We know the time evolution of the eccentric anomaly E as

E − esin(E) = 2π
P

(t− T ) (3.10)

where T is the time at periastron passage and E = 0 at the periastron. Using trigonometric
identities, the following useful expressions follow from the above:

sin(θ) = sin(E)
√

1 − e2

1 − ecos(E) (3.11)

tan(θ) = sin(E)
√

1 − e2

cos(E) − e
(3.12)

tan

(
θ

2

)
=
√

1 + e

1 − e
tan

(
E

2

)
(3.13)



32 Chapter 3. Spectroscopic Binary Stars

In case of double-lined binaries, two radial velocity curves are obtained. They are not
quite mirror images of each other as the semi-amplitudes of each of the component stars
follows an inverse relation with the mass of the respective star. The systemic velocity in
these cases is easily obtained, because the two curves cross when the radial velocity of
each of the component stars is equal to the radial velocity of the system. Fig. 3.1 shows
several RV curves for some SB1 and SB2 systems.

Measuring the radial velocity
But, how do you measure the radial velocity? As we briefly mentioned in Sec. 3.1, this is
done by considering the Doppler effect on radiations from the source stars. When stars
move towards or away from us, the light from them gets blue or red shifted as comapared
to a non-moving source with respect to us. We can then compare the spectral lines and get
the difference between the observed wavelength and wavelength recorded from non-moving
sources for similar lines in the spectra. In the non-relativistic limit, the measured radial
velocity can then be simply given as

V = c
∆λ
λ

(3.14)

where c is the speed of light, ∆λ is the difference between the wavelength and λ is the
laboratory value of the wavelength.

It is quite a common scheme in astronomy to exploit the Doppler effect to measure
radial velocities and use them for various science cases. (See (Meunier, 2021) for a review
of the context of RV observations and their typical properties including the effects of
stellar activity, and also (Lovis u.a., 2010; Endl u.a., 2007; Kaushik u.a., 2024) for the
science use case of RVs in the context of exoplanets.)

3.3 Extracting parameters from the RV curve
In the previous section we have described the RV curve and derived the equations related
to it. In practice, what we observe and directly get from the data are the RV curves.
Now, we will see how we can use the RV curve to extract the parameters that describe
the binary star systems.

3.3.1 Orbital and Spectroscopic parameters
We have seen in the previous section that V = Vγ + K[cos(θ + ω) + ecos(ω)] where
K = 2πasin(i)

P
√

1−e2 is the semi-amplitude of the velocity and Vγ is the radial velocity of the
center of mass of the binary system (systemic radial velocity). From this, it follows that

Vmax = K[ecos(ω) + 1] + Vγ (3.15)
Vmin = K[ecos(ω) − 1] + Vγ. (3.16)

This implies

K = 1
2 (Vmax − Vmin) (3.17)

and

ecos(ω) = 1
2K (Vmax + Vmin) (3.18)
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26 2 Introduction to Binary Systems

Fig. 2.6 Various velocity curves for several binary systems. Some are single-lined and some are
double-lined. Figure taken from Matijevič, et al., Astron. J., 141, 200 (2011). Reproduced by
permission from the AAS

Figure 3.1: Figure 7 from Matijevič u.a. (2011). Various radial velocity curves for several
SB1 and SB2 systems.
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That is, we can determine K by just measuring the maximum and minimum velocity from
the RV curves.

If we observe a double-lined spectroscopic binary, we can determine

K1 = 2πa1sin(i)
P

√
1 − e2

(3.19)

K2 = 2πa2sin(i)
P

√
1 − e2

(3.20)

along with e, ω and Vγ. It immediately follows that

a1sin(i) =
√

1 − e2

2π K1P (3.21)

a2sin(i) =
√

1 − e2

2π K2P. (3.22)

As long as we do not know the inclination angle i, we can not escape from the degeneracy
between the semi-major axis and the inclination. We can, however, perform some more
jugglery and compute a few other parameters as discussed below.

In the COM frame of reference, m1a1 = m2a2 where m1 and m2 are the masses of
S1 and S2, respectively. Also, from Kepler’s Third Law, we have GM = 4π2a3

P 2 where
M = m3

2
(m1+m2)2 . We can express m2 as

m2 = m1
a1

a2
= m1

a1sin(i)
a2sin(i) = m1

K1

K2
. (3.23)

Substituting this in the expression for Kepler’s Third Law, we get

m1sin
3(i) = P

2πG(1 − e2) 3
2 (K1 +K2)2K2 (3.24)

m2sin
3(i) = P

2πG(1 − e2) 3
2 (K1 +K2)2K1. (3.25)

Hence, in the case of double-lined spectroscopic binaries we can obtain the range of
masses of the component stars, but the individual masses can not be inferred due to the
mass-inclination degeneracy until we get the value of inclination angle. In the case of
single-lined spectroscopic binaries we can measure the RV of only one component of the
binary. In this case, we cannot get the values of m1sin

3(i) and m2sin
3(i). However, we

can obtain an expression for the mass-function, f(m). We can substitute K2 = m1K1
m2

in
the Eq. 3.24 to obtain

m2sin
3(i) = PK3

1
2πG (1 − e2) 3

2

(
m1 +m2

m2

)2
. (3.26)

Hence,

f(m) = m3
2sin

3(i)
(m1 +m2)2 = PK3

1
2πG (1 − e2) 3

2 . (3.27)

If the system is also an astrometric/visual binary, then we can obtain the value of the
inclination angle i and remove the degeneracies discussed above.
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3.4 Period
Finding the time period from the RV curve could seem very straightforward but there are
some subtleties involved. There can be cases where we are recording the data at time
intervals which are greater than some multiple of the actual time period. Given enough
such observations over a long time period, the RV may be attaining periodic maxima
and minima which are not recorded after every actual time period. In that case, one
can mistakenly consider the distance between the two peaks in the RV curve as the time
period. So, how do we deal with this problem? We first note that this time duration
is not equal to the time period but is equal to an integral multiple of the time period,
provided the time period remains a constant in that duration.

Suppose that we find the time between two different couple of consecutive maxima
are t1 and t2. Then, we can say t1 and t2 are integral multiples of the actual time period
P . Can we do better than this? Yes! |t1 − t2| is an integral multiple of P . So, it makes
sense to record the measurements at different intervals and not exact regular intervals.
That is, P ′ = uP where P ′ = |t1 − t2| and u ∈ N. Thus, the data should be recorded at
very different time intervals so as to get a number of spurious time periods P ′. Given a
large number of data points, we can get the actual time period by taking the minima of
all the spurious time periods.

Once the actual time period is obtained, we can shift all the data points into one bin
of the time period by subtracting some integral multiple of P from the recorded time.

3.5 Refining the orbital elements
We ask the question: What parameters does the radial velocity depends on? We recall

V = Vγ +K1 (cos(ω + θ) + ecos(ω)) .

where

K1 = 2πa1sin(i)
P

√
1 − e2

.

θ is a function of the time t, and the elements T and e. We can note that the radial
velocity V is a function of time t and the orbital elements Vγ, K1, ω, e, n and T where
n = 2π/P i.e.

V = V (t;Vγ, K1, ω, e, n, T ). (3.28)

Consider that we have RV measurement data {(Vobs, t)} recorded for different times
for a spectroscopic binary system. Now, we wish to get the orbital parameters of the
system using this data. For each time of the observation, we can compute the RV value
Vcal using Eq. 3.8 using the preliminary values. We will choose the least sum of squares
scheme and will minimize the sum of residuals i.e. ∑ (Vobs − Vcal)2 shall be minimized.

We can express the variation in V as

δV = ∂V

∂Vγ
δVγ + ∂V

∂K1
δK1 + ∂V

∂ω
δω + ∂V

∂e
δe+ ∂V

∂n
δn+ ∂V

∂T
δT (3.29)
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to first order. Substituting the values of the partial derivatives, we get

δV =δVγ + (cos(V + ω) + ecos(ω))δK1 −K1(sin(θ + ω) + esin(ω))δω

K1

(
cos(ω) − (2 + ecos(θ))sin(θ + ω)sin(θ)

1 − e2

)
δe

sin(θ + ω)(1 + ecos(θ))2K1(t− T )
(1 − e2)(3/2) . (3.30)

If we have six or more measurements, we can get a system of conditional equations and
we can keep changing the paramters until we obtain the improved set of elements. This
job can be best done using a computer.

3.6 Summary
We have seen that spectroscopic binaries allow us to study the binary star systems which
may be very close to be resolved as visual binaries. We have described how we can obtain
the quantities for spectroscopic binaries listed in Table ??. Note that we can not obtain
any size parameters using spectroscopic binaries. No information about the semi-major
axis can be obtained using single-lined spectroscopic binaries (SB1). We can, however,
get the projection of the semi-major axis asin(i) in the case of double-lined spectroscopic
binaries (SB2). The degeneracy with the inclination can not be resolved using the RV
method. This degeneracy also shows up with mass parameters m1,2sin

3(i) (Eq. 3.24 and
3.25) which can be obtained only in the case of SB2. The best we can do in the case of
SB1 is to obtain the mass function f(m) (Eq. 3.27).

3.7 Further comments
We have seen that K can be expressed in terms of Vmax and Vmin (Eq. 3.17). An inspection
of Eq. 3.19 and 3.20 makes it clear that the RV method will not be very effective for
the face-on cases (i.e. i = 0, π) as the semi-amplitude of the velocity K will be zero for
such cases. Also, K is inversely proportional to the time period P . It is easier to study
spectroscopic binaries if they have short orbital periods and high inclination (i.e. 2i

π
≈ 1)

in order to maximize amplitude of the RV variation. For SB2, the case when i = π/2
gives us an eclipsing binary which allow us to extract all the parameters including the size
parameters given the RV curve. We will see more details about such binaries in Chapter
4.

There are many science-case studies using spectroscopic binaries and the RV method.
We mention some of the studies for interested readers. Massive binary evolution is a very
active area of research and mass discrepancy is one of the major problems. (Tkachenko,
2015) discusses two massive binary systems, V380 Cyg and σ Sco and testing high-mass
stellar evolution models by considering asteroseismic measurements. There have also been
studies to obtain precise RV measurements to test, improve and constrain the Keplerian
orbital solutions for spectroscopic binary star systems (Heyne u.a., 2020). Studies about
collapsed compact objects (like neutron stars) through SB1 have been performed for more
than half a century. Such searches of collapsed objects using spectroscopic binary data are
described in (Trimble u.a., 1969) and in the more recent (Trimble u.a., 2018). There have
also been studies on constraining dark matter fraction inside stars using spectroscopic
binaries which is described in (Peled u.a., 2022).
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The field is rich with questions that need to be answered. As discussed before, the
edge-on cases for SB2 are particularly very interesting and the next chapter is completely
dedicated to such cases of eclipsing binaries.





4. Eclipsing Binary Stars

4.1 Introduction
Binary star systems are systems of two stars that orbit around a common center of mass.
In some of these binary systems, the orbital plane of the two stars lies so nearly in the
line of sight of the observer that the components undergo mutual eclipses (contributors,
2023). These types of binary systems are known as eclipsing binaries.

Eclipsing binaries are characterized by periods of constant light, punctuated by
periodic drops in intensity when one star passes in front of the other. The brightness may
drop twice during the orbit, once when the secondary star passes in front of the primary
star and once when the primary star passes in front of the secondary star (contributors,
2023). The deeper of the two eclipses is called the primary eclipse, regardless of which
star is being occulted, and if a shallow second eclipse also occurs it is called the secondary
eclipse (contributors, 2023).

Eclipsing binaries are important astrophysical objects as they allow astronomers to
determine the masses, radii, and other physical properties of the component stars through
careful analysis of the light curves and other observational data (contributors, 2023). They
also provide insights into the formation and evolution of binary star systems, which are
common in our galaxy.

The first ever observed eclipsing binary was Algol, a triple star system in the
constellation Perseus, which was discovered in 1667. Algol is the best-known example
of an eclipsing binary and has been extensively studied due to its unique properties
(contributors, 2023).
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Figure 4.1: A Representation of different views of a Binary System

4.1.1 Types of Eclipsing Binaries
Eclipsing binaries can be classified based on the relative sizes and separations of their
component stars. Because not all the Binaries acts like same, which is proved by Light
Curves of Binaries. So what makes them different?

So depending on the intimacy of their dance, these stellar couples exhibit distinct
characteristics. This journey delves into three primary types of eclipsing binaries, each
showcasing a different level of stellar interaction: detached, semi-detached, and contact
binaries. By exploring their unique properties, we unlock the secrets hidden within their
eclipses, unveiling the fascinating story of stellar evolution and the intricate dynamics of
binary systems. So here is the classification:-

• Detached : Well-separated stars with minimal interaction. Light curve shows a
sharp U-shaped dip during eclipse. If we talk about historical evidence Algol is the
first ever Eclipsing Binary system ever observed by Babylonian in about 1300BC.
Examples: Algol etc.

• Semi-detached : One star fills its Roche lobe, transferring mass. The light curve
exhibits an asymmetrical dip. Examples: Beta Lyrae etc.

• Overcontact : Close binary with tidally distorted stars, potentially sharing a
common atmosphere. The light curve shows a shallow, rounded dip. Examples: W
Ursae Majoris etc.

4.1.2 Some important Space Missions About Eclipsing Binares
1. Kepler

• Mission: Launched in 2009, Kepler primarily aimed to detect exoplanets
transiting their host stars.

• Eclipsing Binary Detection: Due to its high-precision, long-duration obser-
vations (months to years), Kepler identified a significant number of eclipsing
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(a) Detached Binary (b) Semi-detached Binary

(c) Contact Binary

Figure 4.2: Schematic illustrations of stellar binary systems: (a) detached, (b) semi-
detached, and (c) contact. In a detached binary, the stars are gravitationally bound but
don’t share a common atmosphere. In a semi-detached binary, one star fills its Roche lobe
and transfers mass to the other. In a contact binary, both stars fill their Roche lobes and
share a common envelope.

Figure 4.3: Algol,the first ever observed eclipsing binary
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Figure 4.4: Dimming Algol

Figure 4.5: The NASA Kepler Mission

binaries. These detections were often serendipitous - stars that weren’t initially
targeted for exoplanet searches exhibited periodic dimming due to eclipses.

• Impact: Kepler’s data provided a wealth of information on EB properties like
orbital periods, relative sizes, and mass ratios. This data has been crucial for
calibrating stellar models and understanding binary interactions.

2. Tess
• Mission: Launched in 2018.TESS is the successor to Kepler, focusing on

shorter timeframes (days to weeks) and a much larger sky area.
• Eclipsing Binary Detection: Similar to Kepler, TESS detects EBs as peri-

odic dips in the light curves of stars. However, its shorter observation windows
are better suited for identifying short-period eclipsing binaries that Kepler
might have missed.

• Impact: TESS is expected to discover a large number of short-period EBs,
including those containing compact objects like neutron stars or white dwarfs.
This data will be valuable for studying binary evolution and the formation of
exotic objects.
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Figure 4.6: The NASA TESS mission

4.2 Astrophysical Significance

Eclipsing binaries aren’t just celestial light shows; they’re powerful tools that have revolu-
tionized our understanding of stars. Here’s how these cosmic duos act as game-changers
in stellar astrophysics:

1. Stellar Forensics: Eclipsing binaries allow us to measure a star’s mass, radius,
temperature, and luminosity with incredible precision – better than 1-2%! This
high accuracy is crucial for testing and refining stellar evolution models, essentially
giving us a roadmap for how stars live and die.

2. Cosmic Laboratories: Forget Bunsen burners, eclipsing binaries are nature’s
laboratories! They offer a front-row seat to observe various stellar phenomena. From
the internal vibrations of stars (asteroseismology) to the dynamic interplay of close
binaries (mass transfer), these systems provide a wealth of data for us to explore.

3. Planetary Detectives: Ever wondered if a star has hidden companions? Eclipsing
binaries can reveal their presence! By meticulously monitoring the timing of eclipses
over long periods, astronomers can detect subtle changes that hint at the gravitational
tug of unseen planets or brown dwarfs.

4. Decoding the Light Show: The intricate dimming patterns observed during
eclipses are like secret codes for astronomers. By analyzing these light curves, we can
unlock the geometry of the binary system. This allows us to model fascinating effects
like limb darkening (stars appearing dimmer at the edges), gravitational brightening
(material bulging due to tidal forces), and reflection effects (light bouncing off one
star onto the other).

5. Unraveling the Mystery of M-dwarfs: These low-mass stars are like cosmic
enigmas. Eclipsing binaries with M-dwarf components helps us understand their
poorly understood mass-radius relationship. It turns out these stars might be puffier
than stellar models predict!

6. Mass Transfer Masters: Semi-detached binaries offer a clear view of the dynamic
dance of mass transfer in close binary systems. We can study the flow of stellar
material, how it accretes onto the companion star, and even witness the formation
of hot spots due to this energetic process.

7. Overcontact Enigmas: Overcontact binaries are a puzzle waiting to be solved.
Though abundant, they remain poorly understood. By meticulously modeling
these systems, astronomers are working to unravel their population frequency and
structure, shedding light on these enigmatic cosmic couples.
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Figure 4.7: Light curve of KIC 8736245 obtained by Kepler Space Telescope

4.3 Observations
To study various properties of the eclipsing binary system we first make the following
three fundamental observations:-

• The light curve.
• The spectra of each star are measured at several locations in its orbit.
• The apparent magnitude of the system.

Using these three we then calculate all the required properties of the system.

So, we have four pairs of eclipses in the light curve below. If we zoom in on each
of the two eclipses of a particular pair, we see that one is deeper than the other; we call
the deeper one the primary eclipse, and the shallower one the secondary eclipse.
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Figure 4.8: Four instances of time in an eclipse

4.4 Estimation of parameters
• Orbital Period: The orbital period can be easily calculated from Fig. 4.7 by

taking the difference between two successive primary or secondary eclipses.
We can take the light curve of any particular eclipse, zoom in and make note of the
following time instances as shown in the fig. below.

For this introduction, we’ll just assume that this orbit is perfectly edge-on (or
the inclination is zero), which simplifies all the calculations.

• Radial and Orbital velocities: For finding the radial velocities, we use the spectra
of the stars. The Doppler shift of the lines yields the radial velocity of each star.
Then, assuming that the stars are orbiting around their centre of mass in circular
orbits, we can conclude that the radial velocities of the stars away or towards us are
themselves the orbital velocities around the centre of mass. Let’s denote them by
vA and vB.
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• Radii: From these two figures, we can easily get the following equations:

2RA + 2RB = (vA + vB)(t4 − t1) (4.1)
2RA − 2RB = (vA + vB)(t3 − t2) (4.2)

So we have two equations with two unknowns from which the radii can easily be
found.

• Masses: Now, what about the individual masses? From Kepler’s Third Law, we
have:

P 2 = 4π2

G(m1 +m2)
a3, where a = rA + rB (4.3)

Here,
– P = Period of orbit
– G = Universal Gravitational Constant
– m1 and m2 are the masses of the stars.
– a = rA + rB is the semi-major axis of the orbit.

From this equation, we can therefore derive m1 +m2. As the total momentum w.r.t
the centre of mass is conserved, we then have:

mAvA = mBvB (4.4)

=⇒ vA
vB

= mB

mA

(4.5)

Therefore, using the ratio and sum of the masses we can obtain their individual
masses.

• Temperatures: We now try to make a rough estimation of the temperatures of
our stars.
During one full orbit, each star goes behind the other one, thus forming the primary
and secondary eclipses. The temperatures of both the stars may be different, one
being hotter than the other. It’s easy to follow from here that the primary eclipse
(having a deeper dip) is the case of a cooler star eclipsing the hotter one, and the
secondary eclipse is quite the opposite. Now let the temperatures of these stars be
denoted by TA and TB and the radii be RA and RB.
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From the above figure, we can find the total brightness at each of these moments
(assuming the stars radiate as blackbodies).

Btot = 4πR2
AσT

4
A + 4πR2

AσT
4
A (4.6)

Bsec = 4πR2
AσT

4
A (4.7)

Bpri = 4π(R2
A −R2

B)σT 4
A + 4πR2

AσT
4
A (4.8)

Making some algebraic manipulations, we can obtain the following result:

Btot −Bpri

Btot −Bsec

=
(
TA
TB

)4
(4.9)

We know the brightnesses from the light curve, thereby getting the ratio of the
temperatures. Let’s remember something about dips in the spectra of light curves
at different positions in their orbit. Doesn’t the ratio signify something?
Well, the dips depend upon the size and temperature of the binary pairs. So, in this
case, assuming TA is greater than TB, we can conclude that Btot −Bpri is lower than
Btot −Bsec. So now we know why there is one dip shallower than the other.

This is a particular case for understanding about the dips in light curve, things will
change if our line of sight is inclined at an angle with the plane of the Binaries and
calculations will be tidious than before.

But we could just find an estimated ratio of the temperatures. In order to properly
calculate the temperatures of the stars, one needs to compute a full spectral model of
each star’s photosphere, which will depend on the chemical composition, mass, age,
and other factors. It’s a job quite difficult for us, but astronomers who specialize in
the analysis of eclipsing binaries have developed tools to do all this work.

• Luminosity: Now let’s assume we have the individual temperatures of these stars
after taking into account the above factors. Then how to get their luminosities? If
we continue to assume that the stars emit like blackbodies, then the total energy
emitted by the pair can simply be given by:

L = 4πR2
AσT

4
A + 4πR2

AσT
4
A (4.10)

• Distance from us: Now that we have the luminosity and if we can add just one
more piece of information, i.e. its the apparent magnitude, we can get the distance
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Figure 4.9: Primary And Secondary Eclipse Light Curve

to the system! So what exactly is the Apparent magnitude?

Apparent magnitude is a logarithmic number that measures how bright the object
appears from a distance. The absolute magnitude of a celestial object is defined as
the magnitude it would have if observed from a standard distance of 10 parsecs.

The following is the relation between them:-

m−M = −2.5 log10

(
Fm
FM

)
(4.11)

Here,
– m is the apparent magnitude
– M is the absolute magnitude
– Fm is the flux observed at a particular distance
– FM is the flux observed at the fixed distance do = 10 parsecs

Now putting the relation between Flux and Luminosity, which is:

F = L

4πd2 (4.12)

in Eq. 4.11, we get:

m−M = 5 log10

(
d

do

)
(4.13)

where,
– d is distance to the star
– do = 10 parsecs
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Now the absolute magnitude of our star can be obtained from the following equation:

M = 4.83 − 2.5 log10

(
L

Lo

)
(4.14)

where,
– M is the absolute magnitude of our star.
– 4.83 is the absolute magnitude of the Sun.
– L and Lo are the luminosities of the star and the Sun respectively.

Now, we can use Eq. 4.14 to find the absolute magnitude of our system given their
luminosity (Eq. 4.10). Using that, the apparent magnitude of our system and
Eq.4.13, we can finally obtain the distance to the binary system.
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5. Introduction to PHOEBE

Physics Of Eclipsing BinariEs (PHOEBE) is a powerful and versatile Python package
designed specifically for the analysis and modeling of eclipsing binary stars. Leveraging
advanced algorithms and robust data processing capabilities, PHOEBE provides astronomers
and astrophysicists with a comprehensive toolkit for simulating and interpreting the
complex interactions between binary star systems. It helps in reproducing and fitting
light curves, radial velocity curves, and spectral line profiles of eclipsing binaries.

5.1 Why use PHEOBE ?
• Superior Accuracy and Robustness: Compared to other binary star analysis

models such as JKTEBOP and ELLC, PHOEBE offers significantly higher accuracy and
robustness.

• Advanced Physical Effects: One of PHOEBE’s most distinguishing features is its
ability to incorporate a wide array of advanced physical effects that other models
cannot handle effectively. These include:

– Spots: The ability to model star spots, which can affect the light curves of
binary systems.

– Beaming: The model accounts for relativistic beaming, where the light from
a star is concentrated in the direction of its motion.

– Heartbeat Binaries: PHOEBE can accurately model heartbeat binaries,
systems where the stars have highly eccentric orbits leading to brief but
significant variations in brightness.

– Rossiter-McLaughlin (RM) Effect: The model includes the RM effect, a
phenomenon observed during transits that provides information on the spin-
orbit alignment of the stars.

– Tidal Distortion and Reflection: It also models the effects of tidal forces
and mutual reflection between the stars, further the accuracy of its predictions.

• Comprehensive Forward and Inverse Modeling: It provides a complete
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one-stop solution for performing both forward and inverse modeling.
• Extensive Documentation: Despite its complexity, PHOEBE is designed with the

user in mind, offering extensive documentation. This makes it accessible to both
seasoned researchers and those new to the field, allowing for easy adoption and
integration into various research workflows.

5.2 Basics of Bundle
In PHOEBE, a "bundle" serves as a comprehensive container for all parameters used within
the package. Managing and organizing these parameters is essential, given the complexity
and the sheer number of parameters involved in modeling binary star systems. Bundles
facilitate this organization by grouping related parameters and providing a structure for
accessing and modifying them efficiently.

A bundle in PHOEBE is a collection of parameters along with callable methods. Each
parameter within the bundle is a Python object, and PHOEBE comprises over 140 individual
parameters. These parameters are uniquely identified by a set of tags. For instance,
there are six different contexts in which a parameter may be used: system, component,
constraint, figure, setting, and compute. The compute tag, for example, determines how a
forward model is calculated. These tags allow for filtering and selecting parameters based
on specific needs.

Each floating-point parameter in PHOEBE is also associated with a unit, ensuring
consistency in calculations and interpretations across different scales and contexts.

5.3 Constraints
The parameters defined within a Bundle in PHOEBE are not entirely independent; many
are interconnected through relationships known as constraint equations. These constraints
enforce specific dependencies between parameters, ensuring consistency across the model.
For example, the inclination of the primary star is constrained to match the inclination of
the binary orbit if the pitch is set to zero. As a result, any modification to the orbital
inclination will automatically update the inclinations of both the primary and secondary
stars to maintain this relationship.

In binary star systems, a significant number of parameters are constrained by such
relationships. A notable example is the interdependence of four key parameters: the
semi-major axis (sma), the orbital period, the mass ratio (q), and the total mass. These
parameters are linked by Kepler’s Third Law, which dictates that setting any three of these
parameters allows PHOEBE to automatically compute the fourth. Furthermore, PHOEBE
provides the flexibility to reparameterize or alter the constraint relation, enabling the
calculation of any one parameter based on the values of the other three.

This system of constraints is essential for maintaining the physical realism and
consistency of the model, allowing for dynamic updates and ensuring that all parameters
are in harmony with the underlying astrophysical principles.

5.4 Datasets
In PHOEBE, data management is facilitated through dedicated datasets, which can either
consist of actual observational data or parameterize the forward-model observables that
PHOEBE can synthesize. The following types of datasets are supported:
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• lc (light curves)
• rv (radial velocity curves)
• lp (line profiles)
• orb (orbits)
• mesh (meshes)

Each dataset type serves a distinct purpose and can be added to a bundle in specific
ways, as described below:

5.4.1 Light Curves (lc)
A light curve (lc) graphically represents the light intensity of a celestial object over time.
To include an LC dataset in the bundle, use the following method:

1 b.add_dataset('lc', times=phoebe.linspace(0, 1, 51), dataset='lc01')

By filtering based on the dataset, you can retrieve the associated parameters:

1 b.filter(dataset='lc01').contexts

This step confirms that the lc01 dataset has been successfully integrated, including
all necessary parameters.

Figure 5.1: Plot of synthetically generated light curve data for the ’lc’ dataset.
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5.4.2 Radial Velocities (rv)
Radial velocity (rv) measures the velocity of a star or object along the observer’s line of
sight. To add an RV dataset, use:

1 b.add_dataset('rv', times=phoebe.linspace(0, 1, 11), dataset='rv01')

To view all relevant parameters for the rv01 dataset, filter as follows:

1 b.filter(dataset='rv01', context='dataset').qualifiers

This step indicates that the rv01 dataset has been added, including components for
both the primary and secondary objects.

Figure 5.2: Plot of synthetically generated radial velocity data for the ’rv’ dataset.

5.4.3 Line Profiles (lp)
Line profiles represent the variation of light intensity with wavelength, typically associated
with spectral lines. Once added, the times in this dataset cannot be modified, although
wavelengths can be adjusted. To add this dataset, use:

1 b.add_dataset('lp', times=phoebe.linspace(0, 1, 11), wavelengths=
2 phoebe.linspace(549, 551, 101), dataset='lp01')

Inspect the parameters for the lp01 dataset in the ’dataset’ context:

1 b.filter(dataset='lp01', context='dataset').qualifiers

The lp01 dataset is now successfully included, complete with all necessary compo-
nents.
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Figure 5.3: Plot of synthetically generated light profile data for the ’lp’ dataset.

5.4.4 Orbits (orb)
The orbit (orb) dataset simulates the orbital motion of stars within a system at specified
times, which is particularly useful for visualization. To add an ORB dataset, use:

1 b.add_dataset('orb', compute_times=phoebe.linspace(0, 1, 101),
2 dataset='orb01')

Orbits are parameterized by compute times or phases, and any provided times will
be adopted as compute times. Filter the qualifiers for the orb01 dataset as follows:

1 b.filter(dataset='orb01', context='dataset').qualifiers

1 b.filter(dataset='orb01', context='compute').qualifiers

This confirms that the orb01 dataset has been correctly added, including all orbit-
related components.

(a) Orbit in 2D (b) Orbit in 3D

Figure 5.4: Combined figure of 2D and 3D orbits obtained from PHOEBE.
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5.4.5 Meshes
The mesh dataset is used to visualize the geometry of a system over time. Unlike
observational datasets, meshes are essential for visualization rather than direct data
analysis. Meshes are parameterized by compute times, derived from any times provided
during dataset creation:

1 b.add_dataset('mesh', compute_times=[0, 0.5, 1], dataset='mesh01')

Review the parameters within the ’dataset’ and ’compute’ contexts for the mesh01
dataset:

1 b.filter(dataset='mesh01', context='dataset').qualifiers

With this, the mesh01 dataset is successfully added, completing the dataset integration
process.

Figure 5.5: Plot of synthetically generated Triangular Meshing data for the ’mesh’ dataset.

5.5 Compute
To initiate the modeling process in PHOEBE, we start by adding simple datasets:

1 b.add_dataset('lc', compute_times=phoebe.linspace(0,1,51),
2 dataset='lc01')
3 b.add_dataset('rv', compute_times=phoebe.linspace(0,1,21),
4 dataset='rv01')

These commands incorporate light curve (lc) and radial velocity (rv) datasets with
specified time grids. To compute the forward model using default settings, execute the
following command:

1 b.run_compute()

This command generates synthetic versions of the datasets, tagged with context=’model’.
To inspect these models, use the following commands:
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1 b.filter(context='model').datasets
2 b.filter(context='model', dataset='lc01')

By default, models are tagged as ’latest’ and will be overwritten in subsequent
computations unless a unique model tag is specified. To explicitly tag a model, use:

1 b.run_compute(model='mymodel')

For light curves, the synthetic model includes times and fluxes. Access these parame-
ters with:

1 b.get_parameter(context='model', dataset='lc01', qualifier='times')
2 b.get_parameter(context='model', dataset='lc01', qualifier='fluxes')

For radial velocities, the synthetic model provides times and radial velocities for each
star. To retrieve parameters for a specific component, use:

1 b.filter(context='model', dataset='rv01').qualifiers
2 b.get_parameter(context='model', dataset='rv01',
3 component='primary', qualifier='rvs')
4 b.get_parameter(context='model', dataset='rv01',
5 component='secondary', qualifier='rvs')

5.5.1 Custom Compute Options
Compute options, which control the methods and effects of computations, are defined
with context=’compute’. To list the default options, use:

1 print(b.filter(context='compute').qualifiers)

To create a new set of compute options, such as for quick computations, use:

1 b.add_compute(compute='preview')

To view and modify specific compute parameters:

1 b.filter(context='compute', qualifier='ltte')
2 b.set_value(qualifier='ltte', context='compute', compute='preview',
3 value=False)

For parameters with multiple components, set values for all components simultane-
ously:

1 b.set_value_all(qualifier='rv_grav', context='compute',
2 compute='preview', value=False)

Parameters such as irrad_method can be modified similarly:

1 b.get_parameter(context='compute', compute='preview',
2 qualifier='irrad_method').choices
3 b.set_value(qualifier='irrad_method', context='compute',
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4 compute='preview', value='none')
5 b.set_value_all(qualifier='ntriangles', context='compute',
6 compute='preview', value=800)

To re-run computations with custom options, specify the compute option:

1 b.run_compute(compute='preview')

5.5.2 Temporarily Overriding Options
Compute options can be temporarily overridden for a single run:

1 b.run_compute(compute='preview', irrad_method='horvat')
2 b.run_compute(compute='preview', times=[0, 0.5, 1])

To check the times used in datasets and models, use:

1 print("dataset times: ", b.get_value('compute_times', dataset='lc01',
2 context='dataset'))
3 print("model times: ", b.get_value('times', dataset='lc01',
4 context='model'))

5.5.3 Alternate Backends
Compute options also support running different backends. To use an alternate backend,
such as PHOEBE 1.0, add it with:

1 b.add_compute('legacy', compute='legacycompute')

To inspect parameters for the alternate backend, use:

1 print(b.filter(compute='legacycompute'))

5.6 Times and Phases
PHOEBE operates in time-space, which facilitates the accurate parametrization of time-
dependent quantities. However, challenges arise when data is provided in phase space
or when a phased light curve is required. To address these challenges, PHOEBE offers
methods to convert between time and phase spaces.

Converting between time and phase relies on the following parameters:
• period (the orbital period of the binary at reference time t0)
• dpdt (the rate of change of the orbital period over time)
• t0 (the reference time-point)

The reference time-point t0 can be defined using several conventions, as specified in
the bundle:

• t0_supconj: time of superior conjunction
• t0_perpass: time of periastron passage
• t0_ref: time of the reference point with respect to apsidal motion
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By default, t0_supconj is a free parameter, whereas t0_perpass and t0_ref are
constrained by other parameters. To retrieve these parameters, use the following com-
mands:

1 b.get_parameter(qualifier='t0_supconj', context='component')
2 b.get_parameter(qualifier='t0_perpass', context='component')
3 b.get_parameter(qualifier='t0_ref', context='component')

For demonstration purposes, to change the orbital period such that the times and
phases are affected, use:

1 b.set_value(qualifier='period', component='binary', value=2.5)

The get_ephemeris() method provides the current ephemeris of the system for any
predefined t0 or custom time:

1 b.get_ephemeris(t0='t0_supconj')
2 b.get_ephemeris(t0='t0_perpass')
3 b.get_ephemeris(t0=5)

To convert times to phases, utilize the to_phase() method:

1 b.to_phase([0, 0.1], t0='t0_supconj')
2 b.to_phase([0, 0.1], t0='t0_perpass')

To convert phases back to times (specifically, the first instance of the phase after the
provided t0), use to_time():

1 b.to_time(0.5, t0='t0_supconj')
2 b.to_time(0.5, t0=2455000)

5.6.1 Compute Phases
Datasets in PHOEBE can include a compute_phases parameter, which enables phase-
space computations. To compute a model in phase-space, use:

1 b.add_dataset('lc', compute_phases=phoebe.linspace(0, 1, 101),
2 dataset='lc01')

To view compute times and phases, execute:

1 print(b.filter(qualifier=['compute_times', 'compute_phases'],
2 context='dataset'))

If the orbital period is modified, use the following commands to observe changes:

1 b.set_value('period', component='binary', value=3.14)
2 print(b.filter(qualifier=['compute_times', 'compute_phases'],
3 context='dataset'))

Important: Do not use compute_phases to convert between times and phases if your
data is already in phases. Instead, convert phases to times using to_time() with the
original ephemeris information:



62 Chapter 5. Introduction to PHOEBE

1 phases = phoebe.linspace(0, 1, 101)
2 times = b.to_time(phases, t0=2459752.18750)
3 b.add_dataset('lc', times=times, fluxes=phoebe.linspace(1, 1, 101))

An extra caution should be exercised using the "compute_phases" command when
the data is in phases. Therefore, the user needs to first convert the phases to times...
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6.1 What’s Forward Modeling?
Forward modeling is a computational process where a mathematical model is used to
predict the outcome of a system based on a set of input parameters. It’s essentially a
simulation of a real-world process. The model encapsulates our understanding of the
system’s underlying physics or other relevant principles.

For example, it is a powerful tool for studying eclipsing binary stars. In essence, it
involves creating a theoretical model of the binary system based on assumed or observed
physical parameters of a system, such as the masses, radii, temperatures, and orbital
elements of each star, and then simulating the physical processes and interactions within
an eclipsing binary star system to predict expected light curve and other observations
that would result from such a system.

Figure 6.1: Eclicing binary Model

Why is Forward Modeling used?
Forward modeling is essential for understanding and analyzing causal relationships,

including identifying key factors, and is fundamental to effective research and modeling.
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Researchers can construct robust models capable of simulating various scenarios by testing
and refining theoretical frameworks. This approach enables the extraction of valuable
insights from data patterns, uncovering latent properties and informing predictive capa-
bilities. Ultimately, these methodologies contribute to the assessment of potential risks
and the forecasting of future events.

Other Examples In Astrophysics where Forward Modeling is used:
• Exoplanet Detection and Characterization: Simulating the transit depth and

shape of an exoplanet passing in front of its host star based on assumed planetary
properties.

• Stellar Astrophysics: Creating models of stellar interiors and atmospheres to
predict observable properties like luminosity, temperature, and spectral energy
distribution and to study stellar evolution.

• Galaxy Formation and Evolution: Simulating the formation and evolution of
galaxies based on cosmological parameters, initial conditions, and physical processes
like star formation, galaxy mergers, and feedback mechanisms.

• Cosmic Microwave Background (CMB): Generating simulated CMB maps
based on cosmological models, including parameters like dark matter density, baryon
density, and the amplitude of primordial fluctuations.

6.2 Applications of Forward Modeling in Eclipsing Binaries
• Model Validation: By comparing the forward-modelled light curve with the ob-

served one, we can assess the accuracy of our physical model.

Figure 6.2: Model validation using light curve

• Prediction:Once a reliable model is established, it can predict the system’s behavior
under different conditions or at different times.

• Understanding Physical Processes: By experimenting with different model
parameters, we can gain insights into the physical processes, such as mass transfer
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at play in the binary system.

Figure 6.3: Mass Transfer

• Studying Stellar Evolution: Forward modeling can help understand how stars
evolve with theoretical models of stellar structure.

Figure 6.4: Stellar evolution

• Discover new phenomena: Sometimes, unexpected features in the observed light
curve can hint at new physical processes, which can be explored through forward
modeling.

6.3 Key Steps for Forward Modeling with PHOEBE

Figure 6.5: Key Steps for Forward Modeling with PHOEBE

We first import PHOEBE and initialize a logger and a new bundle.
Example snippet :
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1 import phoebe
2 import numpy as np
3

4 logger = phoebe.logger('error')
5

6 b = phoebe.default_binary()

6.3.1 Defining System Parameters:
while creating the forward model, we set the parameters of the eclipsing binary system.
The following properties are used to define a system.

Stellar properties:
• Masses (m),
• Radii (R),
• Temperatures(T ),
• Luminosities(L),
• Gravities,
• Limb darkening,
• Coefficients,
• etc., for both the components stars.

Orbital elements:
• Period (T),
• Semimajor axis(a),
• Eccentricity(e),
• inclination(i),
• the longitude of the ascending node(Ω),
• the argument of periapsis(ω),
• and time of periapsis passage.

Geometric parameters:
• Spot parameters (if present)’
• tidal distortion,
• etc., for both the component stars.

While setting the values of these parameters in default parameterization, some of
them are constrained by other parameters, and therefore, we can set values for these
parameters by setting the value of the constraining parameters or by re-parameterization
(Constraints were extensively discussed in section 5.3 ).
setting the values of some of the parameters in this example snippet: here, the values that
have been taken are from Bell u.a. (1987).

1 b.set_value('q', 0.360) #mass ratio
2 b.set_value('sma@binary', 21.585261164816995) #Semimajor axis
3 b.set_value('incl@binary', 61.30000) #incilnation
4 b.set_value('ecc@binary', 0.) #eccentricity
5 b.set_value('period@binary', 1.621887) #period
6

7 #Bolometric gravity brightening parameter
8 b.set_value('gravb_bol@primary', 1.)
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9 b.set_value('gravb_bol@secondary', 1.)
10

11 #Synchronicity parameter
12 b.set_value('syncpar@primary', 1.0)
13 b.set_value('syncpar@secondary', 1.0)
14

15 #Yaw of the stellar rotation axis
16 b.set_value('yaw@primary',2.886187)
17 b.set_value('yaw@secondary',2.683761)
18

19 #Mean effective temperature
20 b.set_value('teff@primary', 35600.)
21 b.set_value('teff@secondary', 27470.)
22

23 #Equivalent radius
24 b.set_value('requiv@primary', 8.8)
25 b.set_value('requiv@secondary',5.9)

6.3.2 Adding dataset:
Now, after setting the parameters for the binary system, we synthesize the dataset using
PHOEBE for the example light curve and radial velocity data set (datasets were extensively
discussed in section 5.4).
adding dataset for lightcurve, radial velocity, and mesh in this example snippet:

1 times = b.to_time(np.linspace(-0.05, 1.05, 200))
2 b.add_dataset('lc', times=times, dataset='lc01') #Lightcurve
3 b.add_dataset('rv', times=times, dataset='rv01') #Radial velocity
4 b.add_dataset('mesh',compute_times=np.linspace(0,1,201),dataset='mesh01')

6.3.3 Computing:
Now, using compute PHOEBE, we will calculate the theoretical curves for the dataset chosen
in the previous step based on the input parameters. Computing can be done with several
methods, from less accurate models to very accurate models at the cost of computing
time (Computing was extensively discussed in section 5.5).
let’s take a look at an example snippet of computing where we have run the default
compute command:

1 b.run_compute()

6.3.4 Ploting:
Now, we plot the curves of the dataset and analyze and visualize the system that has been
modeled. We analyze the generated light and radial velocity curves and compare them
to observed data (if available) to assess the model’s accuracy and use the PHOEBE tools
to visualize the system geometry and other parameters. Additionally, we can compare
different computing options. we plot the graphs like the following example snippet:
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1 afig, mplfig = b.plot(dataset='lc01',show=True)

Figure 6.6: Output of the Light curve graph

1 afig, mplfig = b.plot(dataset='rv01',show=True), show=True)

Figure 6.7: Output of the Radial velocity graph

1 afig, mplfig = b.plot(dataset='mesh01',time=0.4, show=True)

Figure 6.8: Mesh of the Binary system
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6.4 DI Herculis: Misaligned binary
Now, let’s take a look at the code for DI Herculis, a misaligned system. First, we import
PHOEBE and initialize a logger and a new bundle.

1 import phoebe
2 from phoebe import u # units
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6 logger = phoebe.logger('error')
7

8 b = phoebe.default_binary()

Next, we define the System Parameters. We’ll adopt and set parameters from the
following sources:

• Albrecht u.a. (2009)
• Claret u.a. (2010)
• DI Herculis. (2023, May 11). In Wikipedia https://en.wikipedia.org/wiki/DI_

Herculis

1 Nt = 2000
2

3 b.set_value('t0_supconj@orbit', 2442233.3481)
4 b.set_value('vgamma@system', 9.1) # [km/s] (Albrecht et al. 2009)
5 b.set_value('ntriangles@primary', Nt)
6 b.set_value('ntriangles@secondary', Nt)
7

8 mass1 = 5.1 # [M_sun] (Albrecht et al. 2009)
9 mass2 = 4.4 # [M_sun] (Albrecht et al. 2009)

10

11 P = 10.550164 # [d] (Albrecht et al. 2009)
12 mu_sun = 1.32712440018e20 # = G M_sun [m3 s^-2],
13 R_sun = 695700000 # [m] Wiki Sun
14

15 sma = (mu_sun*(mass1 + mass2)*(P*86400/(2*np.pi))**2)**(1./3)/R_sun
16

17 incl = 89.3 # deg (Albrecht et al. 2009)
18 vp_sini = 109 # [km/s] (Albrecht et al. 2009)
19 vs_sini = 117 # [km/s] (Albrecht et al. 2009)
20

21 Rp = 2.68 # [R_sun] (Albrecht et al. 2009)
22 Rs = 2.48 # [R_sun] (Albrecht et al. 2009)
23

24 sini = np.sin(np.pi*incl/180)
25

26 vp = vp_sini*86400/sini # [km/s]
27 vs = vs_sini*86400/sini # [km/s]
28

https://en.wikipedia.org/wiki/DI_Herculis
https://en.wikipedia.org/wiki/DI_Herculis
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29 Pp = 2*np.pi*Rp*R_sun/1000/vp
30 Ps = 2*np.pi*Rs*R_sun/1000/vs
31

32 Fp = P/Pp
33 Fs = P/Ps
34

35 b.set_value('q', 0.815)
36 b.set_value('incl@binary', incl) # (Albrecht et al. 2009)
37 b.set_value('sma@binary', sma) # calculated
38 b.set_value('ecc@binary', 0.489) # (Albrecht et al. 2009)
39

40 b.set_value('per0@binary', 330.2) # (Albrecht et al. 2009)
41 b.set_value('period@binary', P) # calculated
42

43 b.set_value('syncpar@primary', Fp) # calculated
44 b.set_value('syncpar@secondary', Fs) # calculated
45

46 b.set_value('requiv@primary', Rp) # requiv (Albrecht et al. 2009)
47 b.set_value('requiv@secondary', Rs) # requiv (Albrecht et al. 2009)
48

49 b.set_value('teff@primary', 17300) # Wiki DI_Herculis
50 b.set_value('teff@secondary', 15400) # Wiki DI_Herculis
51

52 b.set_value('gravb_bol@primary', 1.)
53 b.set_value('gravb_bol@secondary', 1.)
54

55

56 # beta = 72 deg (Albrecht et al. 2009)
57 dOmega_p = 72
58 di_p = 62 - incl
59 b.set_value('pitch@primary', di_p) # di
60 b.set_value('yaw@primary', dOmega_p) # dOmega
61

62 # beta = - 84 deg (Albrecht et al. 2009)
63 dOmega_s = -84
64 di_s = 100 - incl
65 b.set_value('pitch@secondary', di_s) # di
66 b.set_value('yaw@secondary', dOmega_s) # dOmega
67

68 b.set_value_all('atm','extern_planckint')
69 b.set_value_all('irrad_method', 'none')

Now let’s add an LC and RV dataset sampled at 200 points in phase

1 n = 200
2 times = b.to_time(np.linspace(-0.05, 1.05, n))
3

4 b.add_dataset('lc', times=times, dataset='lc01', ld_mode='manual', ld_func='logarithmic', ld_coeffs = [0.5,0.5])
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5 b.add_dataset('rv', times=times, dataset='rv01', ld_mode='manual', ld_func='logarithmic', ld_coeffs = [0.5,0.5])
6 b.set_value('columns', value=['teffs', 'loggs', '*intensities*'])

Computing

1 b.run_compute(ltte=False)

Plotting

1 afig, mplfig = b.plot(kind='lc', show=True)

Figure 6.9: Lighr curve of DI-Herculis

1 afig, mplfig = b.plot(kind='rv', show=True)

Figure 6.10: Radial velocity curve of DI-Herculis





7. Inverse problem

As discussed briefly in Chapter 5, inverse problems start with the observed data in hand.
In the case of forward models, we input the period, mass ratio, eccentricity, argument of
periastron, radii, temperatures, and other parameters of the eclipsing binary system along
with some model defaults like atmospheres and options to compute the forward model.
What we get as outputs for the forward model are the observables of the system, like
LCs in the requested passband, RVs, or spectral line profiles. The inverse problem is all
about finding the correct parameters that would correspond to the observable in hand.
However, this problem is more difficult because the observations we make are inherently
noisy, which may or may not be stationary. In this chapter, we will see how we can
extract the parameters of the system and how we can quantify our lack of certainty in the
extracted values of the parameters.

The general framework for utilizing multiple algorithms in PHOEBE, informally referred
to as the ’phoetting recipe,’ involves a systematic approach to parameter estimation and
refinement. This recipe begins with Estimators (Section 7.1), which propose initial
values for various parameters based on observations alone, without the need to compute
forward models. These initial estimates are then refined using Optimizers (Section 7.3),
which run optimization algorithms to improve the parameters by seeking local or global
solutions. Finally, Samplers (Section 7.4) are employed not to find the global solution
but to sample the local parameter space and provide robust posteriors.

7.1 Estimators

It is often useful to estimate the values of parameters from the datasets as input alone
without having to compute full forward models. PHOEBE includes wrappers around several
algorithms (Conroy u.a., 2020) that directly act on the observations themselves to quickly
provide initial solutions without significant user supervision.
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7.1.1 Periodograms
PHOEBE contains wrappers around two common periodograms - Box Least Squares (BLS),
which is well-suited for boxy eclipses of detached stars, and Lomb Scargle (LS), which is
more appropriate for stars with strong ellipsoidal variations. hese methods are implemented
using astropy.timeseries (The Astropy Collaboration u.a., 2013). It is important to
note that the radial velocity periodogram only supports the LS algorithm. The wrapper
incorporates several advanced options from astropy, such as automatic or manual sampling
in period/frequency, the ability to change the objective function for BLS, and the option
to set the proposed eclipse durations for BLS.

These algorithms evaluate power at different frequencies to detect periodic signals
in unevenly spaced data. By default, the LS algorithm uses a heuristic to choose these
frequencies based on the observation baseline and the Nyquist frequency, although users
can manually specify the frequencies if desired. At each frequency, a sinusoidal model
is fitted, and power is computed based on the model’s fit to the data. Conversely, the
BLS algorithm fits a box-shaped model, representing a flat-bottomed dip, across a grid of
periods, durations, and phases. The power is derived from the likelihood of the model.
The power spectrum generated by these algorithms shows peaks at frequencies where the
fit is strongest, indicating potential periodic signals.

The wrapper takes any number of light curves or radial velocities as input, if running
on multiple light curves, each light curve is normalized by dividing by either the median
or maximum flux value before sending it to the periodogram algorithm. Radial velocities
across all requested data sets are combined and then normalized independently by the
absolute maximum value for the primary and secondary stars, with the secondary then
mirrored. After running the wrapper, the periodogram itself is returned and can be
plotted, and the peak period is proposed for adoption.

7.1.2 RV Geometry
Analytical radial velocities (RVs) are fitted to Keplerian orbit, as discussed in Chapter 3,
to estimate the eccentricity (e), argument of periastron (ω), systemic velocity (vγ), and the
time of superior conjunction (t0,supconj), as well as the mass ratio (q), projected orbital semi-
major axis (aorb) for double-lined spectroscopic binaries (SB2s) or the single-component
projected semi-major axis (acomp,i) for single-lined spectroscopic binaries (SB1s).

Assuming the orbital period (Porb) is known, we begin by binning the input data. A
low-pass Savitzky-Golay filter (Savitzky u.a., 1964) is applied to smooth high-frequency
noise. All estimates are based on per-component radial velocity equations as a function of
true anomaly (ν).

RV1(ν) = 2πa1 sin i
Porb

√
1 − e2

[e cosω + cos(ω + ν)] + vγ

= 2πqa sin i
Porb(1 + q)

√
1 − e2

[e cosω + cos(ω + ν)] + vγ (7.1)

RV2(ν) = − 2πa2 sin i
Porb

√
1 − e2

[e cosω + cos(ω + ν)] + vγ

= − 2πa sin i
Porb(1 + q)

√
1 − e2

[e cosω + cos(ω + ν)] + vγ (7.2)
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Initially, we estimate the mass ratio and systemic velocity in parallel, following the
relationships observed in prior studies (Section 3.3).

vγ = RV1(ν) + qRV2(ν)
1 + q

(7.3)

q = RV1(ν) − vγ
−RV2(ν) + vγ

(7.4)

As we can see, vγ and q appear in both expressions, which means we cannot uniquely
determine them independently of each other. Thus, we iteratively compute them, starting
with a rough estimate of q from the ratio of primary and secondary RV. If only one RV
is available, q cannot be reliably estimated, so we estimate vγ as the midpoint of the
available RV. We can think of vγ as the point in the RV curve where both components
intersect.

With q and vγ estimated, we compute the projected semi-major axis, a. We first
estimate the semi-amplitudes from the available observations in each RV:

Ki = 0.5 [max(RVi − vγ) − min(RVi − vγ)] (7.5)

where index i = 1, 2 refers to the primary and secondary components, respectively.
The corresponding projected semi-major axes are then:

ai sin i = KiPorb

2π
√

1 − e2
(7.6)

Initially, we assume e = 0. If both RVs are available, a = a1 + a2.
Once q, vγ and a are estimated, we fix them in the analytical radial velocities and fit

for eccentricity and argument of periastron with a least-squares algorithm. We compute
several solutions by iterating over a small grid of starting points with the combinations e0
= [0, 0:4] and ω0 = [0, π/2, π], ensuring the entire feasible parameter space is explored.
Iterations continue until convergence within a specified tolerance or the maximum number
of iterations is reached. After each iteration, the value of asini is recomputed with the
updated eccentricity e and the solution is used as an initial point for the next iteration.

Finally, the phase of superior conjunction is estimated as the phase at which v = vγ
and then converted to the time of superior conjunction, t0,supconj.

7.1.3 LC Estimators
LC Geometry
The primary characteristic observed in light curves of eclipsing binary stars is the distinct
dips in flux, resembling Gaussian bell curves during eclipses. This observation motivates
the modeling of the light curve geometry. The procedure involves using Gaussian functions
to model the eclipses and a cosine function to account for ellipsoidal variability due to
tidal interactions. This approach can also approximate the light curve of a semi-detached
binary system where one or both stars are partially or fully filling their Roche lobe. The
two-Gaussian model implementation is based on (Mowlavi, N. u.a., 2017). The following
description outlines the implementation of a two-Gaussian model.

The eclipses are modeled with Gaussian functions of the form
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Figure 7.1: Analytic Keplerian radial velocity model fitted to a synthetic set of observations
with the estimated orbital parameters obtained solely from the phase-folded radial velocity
observations.

Gµi,di,σi
(φ) = die

− (φ−φi)2

2ϵ2
i (7.7)

where index i = 1, 2 refers to the primary (deepest) and secondary (least deep)
eclipses, respectively. The parameters µi, di, and σi correspond to the mean, depth, and
standard deviation of the Gaussian functions, and φ represents the observation phase.
The ellipsoidal-like variability is modelled as

1
2 Aell cos[4π(φ− φ0,ell] (7.8)

where Aell is peak-to-peak amplitude of ellipsoidal-like variability, and φ0, ell specifies
whether cosine is centred on eclipse 1 (φ0, ell = µ1) or eclipse 2 ((φ0, ell = µ1), The
complete two-Gaussian model, including a constant C for baseline flux, is expressed as

G(φ) = C +
2∑

m=−2
Gφ1+m,d1,σ1(φ) +

2∑
m=−2

Gφ2+m,d2,σ2(φ) + 1
2Aell cos[4π(φ− φ0,ell)]

(7.9)

This equation accounts for the periodic nature of the eclipses by including mirrored
Gaussian components over a phase range from -2 to +2. Conventionally, the light curve is
shifted so that the primary eclipse occurs at phase 0, setting µ1 = 0.

The two-Gaussian model is sensitive to the initial values of the model parameters.
Thus, to ensure its convergence, PHOEBE first estimates the eclipse positions, widths, and
depths using a simple algorithm that searches for the minimum of the light curve and
isolates data in its vicinity that cross the median flux in phase (φ) space. All seven
potential models (Table 7.1) are then fitted using a non-linear least-squares optimizer,
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and the best fit is chosen based on the highest Bayesian Information Criterion (BIC). The
BIC is computed as (Feigelson u.a., 2012)

BIC = 2 lnL− p lnNObs (7.10)

where p is the number of model parameters (as detailed in Table 7.1) for each model,
NObs is the number of observations, and lnL represents the log-likelihood.

Table 7.1: Two-Gaussian models used to describe eclipsing binary light curve geometries.

Model Description Number of Parameters
Two eclipses
CG12 Without ellipsoidal-like var. 7
CG12E1 With ellipsoidal-like var. on eclipse 1 8
CG12E2 With ellipsoidal-like var. on eclipse 2 8
One eclipse
CG Without ellipsoidal-like var. 4
CGE With ellipsoidal-like var. on eclipse 1 5
No eclipse
CE Ellipsoidal-like var. 3
C Constant 1

The central positions of the Gaussians correspond to the eclipse positions (φ1 = µ1).
The eclipse durations wi (expressed in phase) are defined as the widths of the Gaussian
functions at a 2% magnitude depth relative to Gaussian depth di, given by

wi = min(5.6σi, 0.4) (7.11)

This upper limit of 0.4 prevents unphysically large eclipse durations for broad
Gaussians. The Eclipse depths di are calculated as the difference between the brightest
model magnitude and the magnitude at the bottom of the eclipse.

di = Gmax −G(φi) (7.12)

The constant C in Equation 7.9 equals Gmax for detached eclipsing binaries without
significant ellipsoidal variability.

The parameter ψ is computed iteratively using the Newton-Raphson method by
solving 2π∆Φ = ψ - sinψ, where ∆Φ is the separation between the two eclipses in phase
space. The eccentricity e argument of periastron ω, and time of superior conjunction
t0,supconj are then estimated as follows:

eccentricity:

e = [sin2(ψ − φ

2 ) + (w2 − w1

w2 + w1
)2 cos2(ψ − φ

2 )]1/2 (7.13)
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argument of periastron:

ω1 = arcsin(1
e

w2 − w1

w2 + w1
) (7.14)

ω2 = arccos(
√

1 − e2

e tan(ψ−φ
2 )

) (7.15)

ω =

ω2, if ω1 ≥ 0
2π − ω2, if ω1 < 0

(7.16)

time of superior conjunction:
t0,supconj = t0,supconj,orig + φ1POrb (7.17)

Figure 7.2: Two-Gaussian model used to determine the phases of eclipse minima, ingress,
and egress (blue and orange vertical lines representing the primary and secondary eclipses,
respectively), as well as the input binned synthetic observations.

EBAI
The 2.4 release of PHOEBE supports two methods - ’mlp’, which uses a trained neural
network (Prša u.a., 2008), and ’knn’, which uses a trained K-nearest neighbors regressor
model.

The input light curves are normalized and fitted with a two-Gaussian model to
estimate eclipse positions and widths. This analytical representation is then sampled
at 201 phase points as the training set and is passed to the feed-forward network with
pre-trained weights using 201 input units, 40 hidden units, and 5 output units to propose
values for parameters: Teff,2/Teff,1, (Requiv,1+Requiv,2/aorb), e sinω0, e cosω0, and i, in
addition to t0,supconj computed from phase-shift applied using two-Gaussian model.
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7.2 Merit Function
To solve the inverse problems, we need synthetic forward model outcomes to compare
them with the observed data. This requires a quantitative way, merit function, to make
a comparison. Below we define the components of the merit function related to PHOEBE
(Conroy u.a., 2020).

lnpriors: It is defined as the logarithm of the probability of drawing the current face
values, p, from the prior distributions π which are either known (or physically motivated)
for the system (see (Kass u.a., 1996)), i.e.,

lnpriors =
∑

priors
ln(P(p|Π)) (7.18)

residuals: It is defined as the difference between the value observed and the value
for the synthetic model for each observation time (or masked time) of the observable

residuals = y0(tmasked) − ym(tmasked) (7.19)
where y0 is the observed value and ym is the value used to get the synthetic model.

chi2 (χ2): In PHOEBE, χ2 is defined as the sum of squares of residuals of all the
data points for the given observable computed across all the datasets over the squares
of the provided per point uncertainties plus σ0 which is added to handle uncertainty
underestimation from the provided observed uncertainties. If the provided uncertainties
are believed to be underestimated, then the uncertainty underestimation term, σlnf, can
be optimized or sampled. In the default setting, σlnf = −∞.

χ2 =
∑

datasets

(y0 − ym)2

σ2 + ln(σ2) (7.20)

where

σ2 = σ2
0 + y2

me
2σlnf . (7.21)

lnlikelihood:It is defined as half the value of the negative of the χ2 value, i.e.,

lnlikelihood = −0.5χ2 (7.22)

lnprobability:
It is defined as the sum of lnpriors and lnlikelihood, In the absense of priors, this

becomes analogous to χ2. In PHOEBE, -lnprobability is used as the default merit function.
The optimal model is found by maximizing the log-probability.

lnprobability = lnpriors + lnlikelihood. (7.23)
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7.3 Optimizers
PHOEBE includes wrappers around several from scipy.optimize (Virtanen u.a., 2020),
such as Nelder-Mead downhill simplex (Gao u.a., 2012), differential evolution, Powell,
and the conjugate gradient. These optimizers are quite efficient in refining model fit once
already in the vicinity of the solution found via estimators.

PHOEBE provides flexibility in choosing the parameters to be adjusted by the optimizer
and offers the option to define priors if desired. It is important to note that, irrespective of
whether the user provides priors or not, the inherent parameter limits, and wrapping limits
act as uninformative priors, effectively penalizing the merit function outside these bounds,
ensuring that the optimization stays within the meaningful regions of the parameter space.

Among the available methods, the Nelder Mead method is often the most efficient
when derivatives are unreliable, as it relies solely on function evaluations and cannot
diverge locally. This robustness contrasts with the differential corrections (DC) method
employed in the Wilson-Devinney (WD) code for binary star modeling. While WD’s
DC algorithm is known for its speed and efficiency when the discrepancy between the
observed and computed curves is relatively small, it can sometimes diverge locally, failing
to distinguish between local and global minima, a common issue with pure gradient-based
methods that rely heavily on local derivative information.

The Nelder Mead method iteratively generates a sequence of simplices to approximate
an optimal point. A simplex, in n dimensions, is a polytope with n + 1 vertices, each
representing a point in n-dimensional parameter space. At each iteration, the vertices
of the simplex are ordered by their objective function values, with the vertex having the
lowest function value considered the best. During each iteration, the algorithm attempts
to improve the solution by modifying the vertex with the highest function value through
geometric transformations: reflection, expansion, contraction, or shrink. These operations
allow the simplex to move through the parameter space towards a local minimum, refining
the solution iteratively until the simplex contracts around an optimal point.

By not relying on gradients, Nelder-Mead is less prone to being stuck in local minima.
However, it also faces challenges in ensuring global optimality, especially in parameter
spaces that are flat around the global minimum with lots of local minima. The choice
of initial simplex and the scale of the parameter space can significantly influence the
convergence and the quality of the solution found.

Figure 7.3: Model improvement after adopting proposals from estimators (dashed red
lines) and after running Nelder-Mead (solid green lines).
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7.4 Samplers
Samplers are not designed to find the global solution, rather, to explore the parameter space
and provide robust posteriors and uncertainties that expose the underlying correlations
and degeneracies between various parameters.

7.4.1 Markov Chain Monte Carlo (emcee)
Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used to sample
from the posterior probability density p(Θ|D). In Bayesian inference, the posterior
distribution combines our prior beliefs p(Θ) about the parameters Θ with the likelihood
p(D|Θ) of observing the data D, according to Bayes’ theorem,

p(Θ|D) = 1
Z
p(Θ)p(D|Θ) (7.24)

where the normalization Z = p(D), known as the evidence, is given by

Z =
∫
p(D|Θ)p(Θ)dΘ (7.25)

Computing evidence Z directly involves integrating over all possible parameter values,
which is often computationally intractable, especially in high-dimensional spaces. However,
it is possible to sample from p(Θ|D) without explicitly computing Z using MCMC methods.
These methods generate a sequence of random samples, known as a Markov chain, whose
stationary distribution is the target distribution we wish to sample from, typically the
posterior distribution in Bayesian inference.

Each point in a Markov chain X(ti) = [Θi] depends only on the position of the
previous state X(ti−1), a property known as the Markov property. As the Markov chain
progresses, the samples gradually represent the posterior distribution. Thus, MCMC
methods effectively approximate the posterior distribution without the need to directly
calculate the evidence Z. These samples can be used to evaluate an integral over the
variable, such as its expected value or variance.

The Metropolis-Hastings (M-H) algorithm is a widely used implementation of MCMC
methods. This algorithm involves proposing a new sample position Y given the current
position X(t) from a transition distribution Q(Y ;X(t)). The proposed sample Y is either
accepted or rejected with the acceptance probability

min(1, p(Y |D)
p(X(t)|D)

Q(X(t);Y )
Q(Y ;X(t) (7.26)

The transition distribution Q(Y ;X(t)), also known as the proposal distribution, is
the probability distribution for the proposal Y given the current position X(t). A common
choice for Q(Y ;X(t)) is a multivariate Gaussian distribution centered on X(t) with a
covariance matrix that can be tuned for performance.

The acceptance ratio p(Y |D)/p(X(t)|D) compares the likelihood of the proposed and
current states under the target distribution. Meanwhile, the ratio Q(X(t);Y )/Q(Y ;X(t))
adjusts for any asymmetry in the proposal distribution. If proposal Y is accepted, then
the new position is set to Y (i.e., X(t + 1) = Y ) Otherwise, the chain remains at the
current position X(t+ 1) = X(t). The acceptance decision is stochastic, a random value
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u is drawn from a uniform distribution U(0, 1), and the proposal is accepted if the value
u is less than or equal to the acceptance probability.

The samples obtained through this method are typically autocorrelated, as each
sample depends on the previous one. This autocorrelation can be reduced by techniques
such as burn-in(discarding initial samples to allow the chain to stabilize), thinning(keeping
every k-th sample) or adjusting the proposal distribution to achieve an appropriate
acceptance fraction, generally between 0.2 and 0.5, by tuning its covariance matrix.

Goodman & Weare (Goodman u.a., 2010) proposed an affine-invariant ensemble
sampling algorithm that significantly outperforms the standard M-H algorithm by pro-
ducing independent samples with a much shorter autocorrelation time. This method
involves simultaneously evolving an ensemble of K walkers S = Xk where the proposal
distributions for one walker k is based on the current positions of the K − 1 walkers in
the complementary ensemble S[k] = Xj,∀j ̸= k. Each walker is represented as a vector in
the N -dimensional real-valued parameter space.

To update the position of a walker at position Xk, a walker Xj is drawn randomly
from the remaining walkers S[k] and a new position Y then is proposed as

Xk(t) → Y = Xj + Z[Xk(t) −Xj] (7.27)

where Z is a random variable drawn from a distribution g(Z = z). Goodman &
Weare advocate a specific form of g(z), given by

g(z) ∝


1√
z

ifz ∈ [ 1
a
, a],

0 otherwise
(7.28)

where a is an adjustable scale parameter, typically set to 2. The proposal is either
accepted or rejected with probability

q = min(1, ZN−1 p(Y |D
p(X(t)|D (7.29)

where N is the dimension of the parameter space, this procedure is repeated for each
walker in the ensemble in sequence.

PHOEBE includes a wrapper around EMCEE (Foreman-Mackey u.a., 2013), a Python
package that implements the Affine-Invariant Ensemble Sampling algorithm. When
preparing an EMCEE run through PHOEBE, users can define the distributions for the
priors. it is generally good practice to start EMCEE in an N-dimensional hyperball (e.g.,
using Gaussian distributions on multiple parameters) centered around the best-known
solution from optimization (Section 7.3).

In addition to setting distributions, users can set options for the number of processors,
walkers, and iterations. After the run is complete, or at intermediate steps as requested,
users can view the progress of the chains and the log probability versus iteration. This
allows adjustment of the burn-in and thinning parameters as necessary. If the run is
completed but convergence has not been achieved, PHOEBE allows for the continuation of
an emcee run from the existing chains.

PHOEBE automatically determines defaults for thinning and burn-in based on the
autocorrelation times of the chains
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burnin = Fburnin max(τautocorr) (7.30)
thin = Fthin min(τautocorr) (7.31)

where Fburnin and Fthin are user-defined scaling factors that default to 2 and 0.5,
respectively, and τautocorr represent the estimated autocorrelation times, per-parameter,
as exposed by EMCEE.

7.5 Posteriors & Uncertainties
Once the chains sufficiently cover the parameter space and are considered to be converged,
users can adjust the thinning, and burn-in to apply to the chains returned by EMCEE
and generate a multivariate distribution of the resulting posteriors. Posterior distribution
not only represents the uncertainties on each of the sampled parameter values but also
the correlations between all of the sampled parameters. When these distributions are
sufficiently Gaussian, the posteriors can easily be converted into a multivariate Gaussian
distribution which represents the posteriors as just the means and a covariance matrix.
These posteriors can be propagated through the constraints and exposed in any desired
parameterization.

Figure 7.4: An example corner plot of the (burn-in and thinning applied) posteriors
directly from emcee results (left). These can optionally be translated into a multivariate
Gaussian distribution (right), which represents the same information with only the means
and covariance matrix when appropriate.
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