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Abstract
This report contains my thoughts, theories and simulations of the topics that I covered during
the Krittika Summer Project. The subject is Solar System Dynamics where I covered a lot of
interesting topics and phenomenons. Finally, I would like to thank my mentors Adarsh Reddy
and Dhananjay Raman for their valuable guidance throughout the project.
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1. Celestial Mechanics
1.1 Introduction

In our Solar System, all the planets revolve around the sun in an elliptical manner. The sun,
along with the entire solar system, orbits around the center of the Milky Way at an average
speed of about 220 kilometers per second. The Milky Way galaxy itself is also moving in relation
to other galaxies in the universe. The universe is constantly expanding, and galaxies are moving
away from each other due to the overall expansion of space. The motion of the sun and our
solar system is just a small part of the grand cosmic dance happening throughout the universe.
Quite complicated isn’t it? We will mostly focus on the elliptical motions of the planets around
the Sun considering the milky way stationary. Let us focus on the governing forces and
equations in the next section.



1.2 Equations of motion

We will be deriving the equations of motion based on the assumption that the planets are point
masses, which is a reasonable assumption, given the large distances between the sun and the
planets. Therefore using the Newton's Law of Gravitational Forces , we obtain,
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Using Newton’s Second Law,
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This system of equations looks quite complicated to solve, therefore, we will be using Numerical
Methods like Runge Kutta, Euler etc.

1.3 Integration technique

For the interest of time and length of the report, we will be covering the more accurate and
widely used 4th order Runge Kutta. Neither will we be covering the proof of the method.



In the fourth-order Runge-Kutta algorithm, the derivative is computed at the beginning of
the time interval, in two different ways at the middle of the interval, and again at the end of the
interval. The two estimates of the derivative at the middle of the interval are given twice the
weight of the other two estimates. The algorithm for the solution of (3.52) can be written in
standard notation as
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Using the same in Newton’s Equations of motion:



1.4 Kepler’s Laws

Kepler's laws of planetary motion are a set of three fundamental principles formulated by the
German astronomer Johannes Kepler in the early 17th century. These laws describe the motion
of planets around the Sun and revolutionized our understanding of celestial mechanics. Let’s
have a look at all 3 Kepler’s Laws one by one.

The man himself

Kepler's First Law (Law of Ellipses)

Each planet orbits the Sun in an elliptical path, with the Sun at one of the two foci of the ellipse.
In other words, the shape of a planet's orbit is not a perfect circle but an ellipse, where the Sun
is located at one of the two fixed points known as foci. The distance between the foci
determines the eccentricity of the orbit. If the eccentricity is close to zero, the ellipse becomes
nearly circular.



Kepler's Second Law (Law of Equal Areas)

A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of
time. This law means that a planet moves faster when it is closer to the Sun (perihelion) and
slower when it is farther away (aphelion). As a result, a planet covers equal areas in its orbital
path in equal periods of time.

Kepler's Third Law (Law of Harmonies)

The square of the orbital period (the time it takes for a planet to complete one orbit around the
Sun) is directly proportional to the cube of the semi-major axis of its orbit (the average distance
from the Sun to the planet).

Mathematically, this can be expressed as: T^2∝ a^3, where T is the orbital period and a is the
semi-major axis of the orbit. This law allows us to compare the orbital periods and distances of
different planets. For example, a planet twice as far from the Sun as another planet will take
approximately 2^(2/3) = 1.59 times longer to complete one orbit.



1.5 Coordinate Systems

Now that we know a bit about different governing equations and laws about our Solar System,
we must learn the different Coordinate Systems, each useful in different scenarios. We will be
looking at relevant frames and motions in this section.

1.5.1 Horizontal Coordinate System

The Horizontal (alt-az) coordinate system is the simplest coordinate system, as it is based on
the observer's horizon. The celestial hemisphere viewed by an observer on the Earth is shown
above. The great circle through the zenith Z and the north celestial pole P cuts the horizon
NESYW at the north point (N) and the south point (S). The great circle WZE at right angles to
the great circle NPZS cuts the horizon at the west point (W) and the east point (E). The arcs ZN,
ZW, ZY, etc, are known as verticals.

The two numbers which specify the position of a star, X, in this system are the azimuth, A, and
the altitude, a. The altitude of X is the angle measured along the vertical circle through X from
the horizon at Y to X. It is measured in degrees. (An often-used alternative to altitude is the
zenith distance, z, of X, indicated by ZX. Clearly, z = 90 - a.) Azimuth is defined as the angle
between the vertical through the north point and the vertical through the star at X, measured
eastwards from the north point along the horizon from 0° to 360°. This definition applies to
observers in both the northern and the southern hemispheres.

The main advantages of the alt-az system are that it indicates clearly how high a star is above
the horizon and in what direction it can be found. The main disadvantage is that it is a local
coordinate system, so two observers at different points on the Earth's surface will measure
different altitudes and azimuths for the same star at the same time. In addition, a star's alt-az
coordinates change with time as the celestial sphere appears to rotate. Despite these problems,
most modern research telescopes use alt-az mounts, owing to their low cost and great stability.



1.5.2 Equatorial Coordinate System

In the equatorial coordinate system, Earth's equator is the plane of reference. Earth's axis of
rotation points to the north and south celestial poles. The celestial sphere is as large as the
known universe, and Earth is at the center of this sphere. The celestial poles do not move as
Earth rotates. For an observer standing at Earth's equator, the celestial poles are on opposite
horizons at exactly the north and south points, and the celestial equator passes overhead going
exactly from the east to west horizon.

To describe an object's location in the sky, we imagine a great circle through the celestial poles
and the object and call this the object’s hour circle. Where the sun in its path crosses the
celestial equator each year around March 21 is called the vernal equinox, and it is this line that
is the reference for the east-west coordinate of the object. Because Earth's axis is inclined 23.5°
to the plane of its orbit around the sun, objects in the solar system (such as the planets and,
from our perspective, the sun) move across the celestial sphere not along the equator, but
rather in their own orbits, most of which are in nearly the same plane as Earth's orbit. This
imaginary path of the sun’s apparent motion, called the ecliptic, is a curving line that runs
around the sphere ranging between 23.5° north and 23.5° south. The constellations of the
zodiac all lie on the ecliptic. The object’s elevation above the celestial equator is called
declination



The coordinates of the object, then, are given by its declination and its right ascension or hour
angle between the object’s hour circle and the vernal equinox. Declination is expressed in
degrees (0° to +90° if north of the equator, 0° to -90° if south of the equator). Right ascension is
expressed either in degrees (0° to 360° measured eastward from the vernal equinox) or, more
commonly, in hours, minutes, and seconds of time (0 to 24 hours). Declination and right
ascension are absolute coordinates regardless of the observer’s location on Earth or the time of
observation. The only exception is due to the slight 26,000 year cyclic change in the equatorial
coordinates because of the precession of Earth’s axis. Precession causes the stars to appear to
shift west to east at the rate of .01 degree (360 degrees/26,000 years) with respect to the vernal
equinox each year. For example, in the time of ancient Rome, the vernal equinox was located in
the constellation of Aries. It is now moving into the constellation of Aquarius.

There are more coordinate systems like Elliptical and Galactic, we shall look at them when we
use them.

2. Orbits
Now that we have an idea about the motion, frames, coordinates and laws governing planetary
motion, we will try to understand and simulate some interesting orbits and phenomena in our
Solar System.

2.1 Sun-Earth System

The two-body problem is interesting in astronomy because pairs of astronomical objects are often
moving rapidly in arbitrary directions (so their motions become interesting), widely separated from
one another (so they will not collide) and even more widely separated from other objects (so outside
influences will be small enough to be ignored safely).

In the case of the Sun-Earth system, the Sun's much greater mass compared to Earth results in the
Earth orbiting the Sun. Both the Sun and Earth experience a gravitational pull toward each other,
causing the Sun to wobble slightly due to the gravitational influence of Earth, though this effect is
negligible given the Sun's immense mass.



Considering the Sun and Earth as point masses, given the large distance between them, we
numerically integrate Newton's Laws of Gravitation to simulate the Earth’s motion around the
sun.

True Sun - Earth system
T = 365 days

Sun - Earth system , if the earth had velocity > escape velocity
T = 365 days



We will discuss the code for this problem in the next section where we generalize it for n bodies.

2.2 N-body Simulation

In an N-body simulation, each celestial body (e.g., stars, planets, or galaxies) is treated as a
point mass, and the simulation calculates the positions and velocities of these bodies over time
as they gravitationally interact with one another. The code that I created for generalizing n body
simulation :

def getAcc(pos ,mass, n): ## returns (n,3) acceleration

## getting x , y , z separately

x = pos[:, 0:1].reshape(n,1)

y = pos[:, 1:2].reshape(n,1)

z = pos[:, 2:3].reshape(n,1)

## relative coordinates Xij

x_rel = x.T - x

y_rel = y.T - y

z_rel = z.T - z

## r^3

r3 = x_rel**2 + y_rel**2 + z_rel**2

## r^(-1.5) keeping in mind rii is 0

r3[r3!=0] = r3[r3!=0]**(-1.5)

ax = G * (r3 * x_rel) @ mass

ay = G * (r3 * y_rel) @ mass

az = G * (r3 * z_rel) @ mass

return np.hstack((ax , ay , az))

The above function calculates and returns the acceleration of every planet using the position of the planets with
respect to each other.

def solve(mass , pos , vel, n , t_final , dt):

# Parameters

t = 0

total_steps = np.int64(np.ceil(t_final/dt))

# Initial acceleration

acc = getAcc(pos , mass , n)

# Position matrix to save all positions (Number of bodies , 3 , total_time_frames)

pos_m = np.zeros((n,3,total_steps+1) , dtype=np.float64)

pos_m[:, :, 0] = pos

# Calculate positions

for i in range(total_steps):

pos += vel*dt + acc*dt*dt/2



vel += 0.5 * acc * dt

acc = getAcc(pos , mass , n)

vel += 0.5 * acc * dt

t+=dt

pos_m[: , : , i+1] = pos

return pos_m

The above function uses euler method to solve for positions of each of the planets.
*Refer to my GitHub repository for the rest of the code

Here are some interesting stable orbits :

2-D donut 8-Orbit

2.3 Restricted 3-Body problem

Further let us dive into some special points like Lagrangian points, but before that let us try to
understand the restricted 3-body problem, which will help us understand and simulate around
the Lagrangian points.

The restricted three-body problem is a simplified dynamical model used in celestial mechanics
to study the motion of a small mass (e.g., a spacecraft or a small celestial body) in the
gravitational field of two larger masses that orbit around their common center of mass. In this
problem, the two larger masses are assumed to move in circular or elliptical orbits around their
center of mass, while the small mass is considered to have a negligible influence on the motion
of the two larger masses.

The three-body problem is inherently complex and does not have a general analytical solution,
except for a few special cases. However, by introducing the "restricted" assumption that the

https://github.com/SolarSystemDynamics-KSP4/solarsystemdynamics-drani3


small mass has a negligible effect on the motion of the larger masses, the problem becomes
more tractable and can be approximated with greater ease. In the context of the restricted
three-body problem, the motion of the small mass is governed by the gravitational forces
exerted by the two larger masses, which are assumed to move in fixed orbits. The gravitational
force from each of the two larger masses depends on the distance between the small mass and
each of the larger masses. The equations of motion for the small mass can be derived using
Newton's law of universal gravitation and the principles of classical mechanics.

Let’s start the derivation, but first, some restrictions :

● There are two primary masses, and the mass of the tertiary object is extremely
small in comparison to m1 and m2

● m1 > m2
● The two primary objects orbit in a circle around their center of mass

We first attach a non-inertial coordinate system to the barycenter of the system of and ,
such that the -axis of this coordinate system points towards . The distance from to is ,
which is also the radius of the circular orbit.

The inertial angular velocity of the reference frame is: (1)



Where, (2)

T is the period of the orbit, and the orbital period for a circular orbit is: (3)

where the gravitational parameter is given by: (4)

we only need to find the x-coordinates, which we can do from the equation for the
center of mass: (5)

We need a second independent equation to solve for and . Fortunately, we know𝑥
1

 𝑥
2

the distance between the masses is . Solving for : (6)𝑟
12

𝑥
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To solve this set of equations, it’s convenient to define two dimensionless ratios: (7), (8)



Also, (9), (10)

The position of the tertiary mass relative to the barycenter is: (11)

The position of the tertiary mass relative to is: (12)𝑚
1

and finally, the position of relative to is: (13)𝑚 𝑚
2

Newton’s second law requires the inertial acceleration. To find that, we first find the inertial
velocity of . We need to account for the rotating frame of reference. This means that the𝑚
velocity and acceleration need to include the rotation of the coordinate system: (14)

where is the absolute velocity of the barycenter and is the velocity calculated in the𝑣
𝑐𝑜𝑔

𝑣
𝑟𝑒𝑙

moving coordinate system: (15)

Then we can find the absolute acceleration of : (16)𝑚

This equation can be simplified because we showed that the acceleration of the
barycenter is zero for the two-body problem, = 0 . In addition, the angular velocity is𝑎

𝑐𝑜𝑔 

constant since the orbit is circular, so . Then, Eq. (56) can be simplified to:Ω =  0



Plugging everything in and simplifying: (17)

For the tertiary body, the forces are due to both of the other masses: (18)

The two forces are found by Newton’s law of gravitation: (19) , (20)

Where,

And, (21) , (22)

Combining equation 18, 19 and 20, and dividing by m, we get: (23)



Finally, using (17) and (23),

All the boring derivations are done and the stage is set for the next topic, lagrangian points.

2.4 Lagrangian points

Lagrangian points, also known as Lagrange points or libration points, are specific locations in
space where the gravitational forces of two large celestial bodies, such as a planet and its moon
or a planet and its star, create regions of gravitational equilibrium. In these regions, the
gravitational pull from both bodies results in a stable or quasi-stable point where a smaller
object, like a spacecraft or satellite, can remain relatively stationary with respect to the two
larger bodies.

There are five Lagrangian points labeled L1 to L5, and they have specific geometric
configurations in relation to the two larger masses.



Of the five Lagrange points, three are unstable and two are stable. The unstable Lagrange
points – labeled L1, L2, and L3 – lie along the line connecting the two large masses. The stable
Lagrange points – labeled L4 and L5 – form the apex of two equilateral triangles that have the
large masses at their vertices. L4 leads the orbit of earth and L5 follows.

The L1 point lies on the line defined between the two large masses M1 and M2. It is the point
where the gravitational attraction of M2 and that of M1 combine to produce an equilibrium. An
object that orbits the Sun more closely than Earth would typically have a shorter orbital period
than Earth, but that ignores the effect of Earth's gravitational pull. If the object is directly
between Earth and the Sun, then Earth's gravity counteracts some of the Sun's pull on the
object, increasing the object's orbital period. The closer to Earth the object is, the greater this
effect is. At the L1 point, the object's orbital period becomes exactly equal to Earth's orbital
period. L1 is about 1.5 million kilometers, or 0.01 au, from Earth in the direction of the Sun.

The L2 point lies on the line through the two large masses beyond the smaller of the two. Here,
the combined gravitational forces of the two large masses balance the centrifugal effect on a
body at L2. On the opposite side of Earth from the Sun, the orbital period of an object would
normally be greater than Earth's. The extra pull of Earth's gravity decreases the object's orbital
period, and at the L2 point, that orbital period becomes equal to Earth's. Like L1, L2 is about 1.5
million kilometers or 0.01 au from Earth (away from the sun). An example of a spacecraft at L2
is the James Webb Space Telescope, designed to operate near the Earth–Sun L2.

The L3 point lies on the line defined by the two large masses, beyond the larger of the two.
Within the Sun–Earth system, the L3 point exists on the opposite side of the Sun, a little outside
Earth's orbit and slightly farther from the center of the Sun than Earth is. This placement occurs
because the Sun is also affected by Earth's gravity and so orbits around the two bodies'
barycenter, which is well inside the body of the Sun. An object at Earth's distance from the Sun
would have an orbital period of one year if only the Sun's gravity is considered. But an object on
the opposite side of the Sun from Earth and directly in line with both "feels" Earth's gravity
adding slightly to the Sun's and therefore must orbit a little farther from the barycenter of Earth
and Sun in order to have the same 1-year period. It is at the L3 point that the combined pull of
Earth and Sun causes the object to orbit with the same period as Earth, in effect orbiting an
Earth+Sun mass with the Earth-Sun barycenter at one focus of its orbit.

The L4 and L5 points lie at the third vertices of the two equilateral triangles in the plane of orbit
whose common base is the line between the centers of the two masses, such that the point lies
60° ahead of (L4) or behind (L5) the smaller mass with regard to its orbit around the larger
mass.

Now that we know more about the Lagrange points and their location, let’s try to simulate and
see what orbit a satellite in different lagrangian points follow.



2.5 Horseshoe and Tadpole orbit

Horseshoe Orbit:

When the third object is extremely close to the L4 and L5 points, it demonstrates a
quasi-periodic orbit around that point.One of the examples is horseshoe orbit. In a horseshoe
orbit, the smaller object orbits around one of the larger masses but experiences a gravitational
interaction that causes it to oscillate in a shape resembling a horseshoe. It appears as if the
smaller object is approaching the larger mass, then changing direction, and moving away, only
to repeat the process again. The horseshoe orbit occurs around the L3 Lagrangian point in the
Sun-Earth system. Here, the smaller object orbits the Sun slightly faster or slower than the
Earth, and the gravitational interaction between the two causes the peculiar horseshoe-like
motion. It's as if the smaller object is "chasing" the Earth around the Sun. Here is an example I
simulated :

u2 = 0.001

x = 0.5 - u2 + 0.0065

y = sqrt(3) / 2 + 0.0065

xd = 0

yd = 0

Horseshoe Orbit

Tadpole Orbit:

In a tadpole orbit, the smaller object also orbits one of the larger masses but does so in a long,
elongated shape resembling a tadpole. It appears as if the smaller object is moving ahead of the
larger mass, then looping back, and moving ahead again in a repeating pattern. The tadpole
orbit occurs around the L4 and L5 Lagrangian points in the Sun-Jupiter system (or other
planet-moon systems). These points are associated with the formation of Trojan asteroids,
which gather around these Lagrangian points due to their gravitational interactions with the
larger bodies. The tadpole-shaped orbit of these asteroids is a result of the balance between the
gravitational forces of the two larger masses.



μ2 = 0.000953875

x = -0.97668

y = 0

xd = 0

yd = -0.06118

Tadpole Orbit

3. Celestial Phenomena
3.1 Analemma

An Analemma is the diagram showing the position of the Sun in the sky, as seen from a fixed
location at the same time, throughout the year. Its structure looks similar to that of the figure: “8”.
But unlike the figure of 8, the two loops of the Analemma are unequal in size with one of them
larger than the other. In astronomy, the Analemma is considered one of the most difficult and
demanding phenomena to imagine because it is never present all at once. It requires a virtual
image made at the same time of day on 30 to 50 days throughout the year. The below photo
was taken in 1998–99 of Analemma from the office window of Bell Labs, Murray Hill, NJ.



There are two factors that contribute to the formation of the Analemma pattern and they are
completely independent of each other.

● Earth revolves around the Sun in an elliptical orbit.
● The Earth is tilted on its axis 23.5° in relation to the plane of its orbit around the Sun.

Let’s take four cases to understand the factors better.

No tilt Big tilt
Circular Orbit Elliptical Orbit

No tilt Big tilt
Elliptical Orbit Circular Orbit

I tried simulating the analemma on earth, but there is some mathematical error, which is giving
me a symmetrical Analemma which should not be the case considering the tilt and orbit of earth.
Code can be found here

https://github.com/SolarSystemDynamics-KSP4/solarsystemdynamics-drani3


3.2 Black hole

Let us now try to understand some interesting phenomenons related to black holes. But first let’s
try to understand what a black hole is. Well, a black hole is simply an astronomical object that is
formed when a massive star collapses under its own gravitational force. When a star exhausts
its nuclear fuel, it can no longer support its own weight against gravity, leading to a catastrophic
implosion. The core of the star collapses to an incredibly dense and compact state, creating a
region in space where gravity is so strong that nothing, not even light, can escape from it. This
point of infinite density and zero volume is called a singularity.

The boundary around the singularity is known as the event horizon. Once an object crosses the
event horizon of a black hole, it is trapped, and there is no known way for it to escape from the
black hole's gravitational pull.

A photon orbit, also known as a photon sphere, is a region around a black hole where photons
(particles of light) can travel in closed, stable orbits. In this region, the gravitational pull of the
black hole is so strong that photons can be trapped and forced to travel in a circular path around
the black hole, without falling into it or escaping from it. The photon sphere is located at a
distance from the black hole that is approximately 1.5 times the Schwarzschild radius.

A black hole is also appeared to have a thin band around it made of all the stellar debris, dust
and matter that was passing through the event horizon and this band of matter which is at the
edge of the horizon and has not fallen into the black hole is known as an accretion disk. It is
located at a distance 3 times the Schwarzchild radius.



The Schwarzchild radius is given by :

Let’s move on the simulate the path of photon around a black hole, we will use the following
equation, where E is the energy of the system,

We also have, by conservation of momentum,

Using these equations, we can numerically solve the path of photon. Let’s look at the code:

def get_L(R, thetad):

return (R ** 2) * thetad

def get_E(R, Rd, l, rbh, thetad ):

l = get_L(R, thetad)

return 0.5 * (Rd ** 2) + (l ** 2) / (2 * (R ** 2)) - (l ** 2) * rbh

/ (2 * (R ** 3))

The above function helps me to calculate the energy and momentum at any time,

def thetadot(l,r):

return l/(r**2)

def drdtheta(E,l,r,rbh):

t = 2 * E - (l**2)/(r**2) * (1- rbh /r)

if(t > 0):

return - np.sqrt(t)

else:

return np.sqrt(-t)

These calculate the thetadot and dr/dt at every position.



def rk4(E, l, r, rd,rbh, theta, thetad, dt):

k1 = dt * thetadot(l,r)

l1 = dt * drdtheta(E,l,r,rbh)

k2 = dt * thetadot(l, r+l1/2)

l2 = dt * drdtheta(E,l,r+l1/2,rbh)

k3 = dt * thetadot(l, r+l2/2)

l3 = dt * drdtheta(E,l,r+l2/2,rbh)

k4 = dt * thetadot(l, r+l3)

l4 = dt * drdtheta(E,l,r+l3,rbh)

return theta + ( k1 + 2*k2 + 2*k3 + k4)/6, r + ( l1 + 2*l2 + 2*l3 +

l4)/6

Results :


