
Krittika Summer Projects 2023

Solar System Dynamics

Ramesh Dange





Contents

1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Newtonian Gravity 5

1.2 Two Body Problem 5

1.3 Reduced Three Body Problem 5
1.3.1 Lagrangian Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Virial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Photon Path Around Non Rotating Blackhole 6

1.5 Analemma 6

1.6 Integrators 7
1.6.1 Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.2 Euler-Richardson Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8subsection.1.6.3

2 Implementation (Foundation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction 9

2.2 Establishing Core C++ Classes 9

3 Two Body system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Inroduction 11

3.2 Circular Trajectories 11

3.3 Elliptic Trajectories 11

3.4 Hyperbolic Trajectories 12

3.5 Plots 12



4 Restricted Three Body System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Problem Setup 15
4.2 Contour Plot of Potential in the Rotating Frame 15
4.3 Tadpole and Horseshoe Orbits 15
4.3.1 Tadpole Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Horseshoe Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Plots 16

5 Photons around a Non-Rotating Black Hole . . . . . . . . . . . . . . . . . . . . 19

5.1 Problem Setup 19
5.2 Initial Conditions 19
5.2.1 Trajectory 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.2 Trajectory 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Plots 20

6 Analemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Problem Setup 21
6.2 Initial Conditions 21
6.2.1 Planet Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.2 Planet Mar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3 Plots 22

7 Kirkwood Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.1 Problem Setup 25
7.2 Initial Conditions 25
7.3 Plots 26
7.4 Conclusion 26



1. Theory

1.1 Newtonian Gravity

Newtonian gravity, formulated by Sir Isaac Newton, describes the force of attraction between
two objects with mass. According to Newton’s law of universal gravitation, the gravitational
force between two objects is directly proportional to the product of their masses and inversely
proportional to the square of the distance between them.

G
m1 ·m2

r2 (1.1)

1.2 Two Body Problem

The Two-Body Problem involves the study of the motion of two celestial bodies under the influence
of their mutual gravitational attraction. This problem assumes that the mass of each body is
concentrated at its center of mass and neglects the gravitational effects of other celestial bodies.
The motion of the two bodies can be described by solving the equations of motion derived from
Newton’s law of universal gravitation. The solutions can yield various orbital shapes, including
circular, elliptical, parabolic, and hyperbolic orbits.

1.3 Reduced Three Body Problem

The Reduced 3-Body Problem is a simplified version of the gravitational interaction between three
celestial bodies, where one body is significantly less massive than the other two. The motion of the
lighter body can be approximated by considering the gravitational forces exerted by the two more
massive bodies.
By applying the principle of barycenter, the system can be transformed into a Two-Body Problem.
The reduced mass (µ) is defined as:

µ =
m1 ·m2

m1 +m2
(1.2)
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1.3.1 Lagrangian Points
Lagrangian points, named after Joseph-Louis Lagrange, are five points in a Two-Body System
where the gravitational forces and centrifugal forces balance each other, allowing for stable positions
for other smaller bodies. These points are denoted as L1, L2, L3, L4, and L5.
Lagrangian points can be determined by solving the equations of motion for a small mass located at
a Lagrangian point, where the gravitational force from the two primary masses and the centrifugal
force are in equilibrium.

1.3.2 Virial Theorem
The Virial theorem is a mathematical relationship that relates the average kinetic energy (K) to
the average potential energy (U) of a system in equilibrium. It states that for a stable system, the
average kinetic energy is equal to minus half the average potential energy:

2K =−U (1.3)

1.4 Photon Path Around Non Rotating Blackhole
The Schwarzschild radius of a black hole is given by

rBH =
2GMBH

c2 , (1.4)

where MBH represents the mass of the black hole. The Schwarzschild radius defines the radius at
which the escape velocity equals the speed of light, delineating the point of no return for any object
within this boundary.
To plot the trajectory of a photon around a non-rotating black hole, we will utilize the energy and
angular momentum conservation equations:

1
2

ṙ2 +
l2

2r2 −
l2rBH

2r3 = E (for energy), (1.5)

and

r2
θ̇ = l (for angular momentum), (1.6)

where ṙ represents the derivative of r with respect to time, θ is the angular coordinate, l is the
specific angular momentum of the photon, E is the energy of the photon, and c is the speed of light.

1.5 Analemma
An analemma is a graphical representation of the Sun’s apparent motion in the sky over the course
of a year, as observed from a fixed location on Earth at the same time each day. This trajectory is
shaped by the combination of the Earth’s axial tilt and its elliptical orbit around the Sun.
The rate of change of the angle θ with respect to time t is given by the equation:

dθ

dt
=

(1+ ecosθ)2

T · (1− e2)1.5 (1.7)

Here, θ represents the current position of the planet from its perihelion, e is the eccentricity of the
planet’s orbit, and T denotes the period of the planet’s orbital motion.
The declination δ is calculated using the equation:

δ = sin−1(sinε · sinλ ) (1.8)
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In this equation, ε represents the axial tilt of the planet, and λ corresponds to the geocentric ecliptic
longitude of the stellar object in question.
The right ascension α is calculated using the equation:

cosα =
cosλ

cosδ
(1.9)

In this equation, λ represents the geocentric ecliptic longitude of the stellar object, and δ is the
declination.
The altitude a (at the north pole) is calculated using the below equation:

a = δ (1.10)

The azimuth A (at the north pole) is calculated using the equation:

A = α −ω · t (1.11)

In these equations, δ represents the declination, α represents the right ascension, ω denotes the
angular velocity of revolution, and t represents the time.

1.6 Integrators
The accurate numerical solution of differential equations plays a crucial role in various scientific
and engineering applications. Integrators, or numerical integration methods, are essential tools used
to approximate the solutions of ordinary differential equations (ODEs).

1.6.1 Euler Method
The Euler method is a simple numerical integration technique used to approximate the solution of
ordinary differential equations (ODEs). It is based on the idea of approximating the derivative of a
function using a finite difference. The basic algorithm of the Euler method is as follows:

• Given an initial condition y0 at t = t0.
• Choose a step size h.
• Iterate using the following formula:

– Calculate the derivative f (tn,yn) at each time step.
– Update the solution using the formula yn+1 = yn +h · f (tn,yn).
– Update the time tn = t0 +n ·h.

The Euler method is relatively straightforward to implement but may introduce significant errors,
particularly for large step sizes or highly nonlinear systems. It is considered a first-order numerical
integration method.

1.6.2 Euler-Richardson Method
The Euler-Richardson method, also known as the semi-implicit Euler method or the modified Euler
method, is an improvement over the basic Euler method. It provides better accuracy by considering
a midpoint approximation for the derivative. The algorithm for the Euler-Richardson method is as
follows:

• Given an initial condition y0 at t = t0.
• Choose a step size h.
• Iterate using the following formula:

– Calculate the derivative f (tn,yn) at each time step.
– Update the solution using the formula yn+1 = yn +h · f (tn + h

2 ,yn +
h
2 · f (tn,yn)).

– Update the time tn = t0 +n ·h.
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The Euler-Richardson method considers the derivative at a midpoint, resulting in improved accuracy
compared to the basic Euler method. However, it still has limitations for highly nonlinear systems
or large step sizes.

1.6.3 Runge-Kutta (RK4) Method1

The Runge-Kutta (RK4) method is a widely used numerical integration technique for solving
ordinary differential equations (ODEs). It offers higher accuracy compared to the Euler methods
by utilizing multiple evaluations of the derivative at various points within a time step. The RK4
method employs a fourth-order approximation, resulting in improved accuracy for a wide range of
systems. The algorithm for the RK4 method is as follows:

k1 = f (xn, tn) ·∆t (1.12)

k2 = f
(

xn +
k1

2
, tn +

∆t
2

)
·∆t (1.13)

k3 = f
(

xn +
k2

2
, tn +

∆t
2

)
·∆t (1.14)

k4 = f (xn + k3, tn +∆t) ·∆t (1.15)

xn+1 = xn +
1
6
(k1 +2k2 +2k3 + k4) (1.16)

The application of the fourth-order Runge-Kutta algorithm to Newton’s equation of motion yields
the following update equations:

k1v = a(xn,vn, tn) ·∆t (1.17)

k1x = vn ·∆t (1.18)

k2v = a
(

xn +
k1x

2
,vn +

k1v

2
, tn +

∆t
2

)
·∆t (1.19)

k2x =

(
vn +

k1v

2

)
·∆t (1.20)

k3v = a
(

xn +
k2x

2
,vn +

k2v

2
, tn +

∆t
2

)
·∆t (1.21)

k3x =

(
vn +

k2v

2

)
·∆t (1.22)

k4v = a(xn + k3x,vn + k3v, tn +∆t) ·∆t (1.23)

k4x = (vn + k3v) ·∆t (1.24)

And the updated values of velocity (vn+1) and position (xn+1) for the next time step are given by:

vn+1 = vn +
1
6
(k1v +2k2v +2k3v + k4v) (1.25)

xn+1 = xn +
1
6
(k1x +2k2x +2k3x + k4x) (1.26)

1Gould, H., Tobochnik, J., Christian, W. (2016). An Introduction to Computer Simulation Methods Applications to
Physical System. Addison-Wesley Publishing Company. Appendix 3A.



2. Implementation (Foundation)

2.1 Introduction
The implementation of complex systems often requires a combination of programming languages
to optimize performance and flexibility. This chapter presents the foundational implementation
for our simulation, utilizing C++ as the underlying language and Python for plotting and analysis.
This approach harnesses the high-performance capabilities of C++ for the simulation core, while
leveraging the user-friendly interface and extensive libraries of Python for analysis and visualization.

2.2 Establishing Core C++ Classes
The establishment of the implementation framework commences with the design and implementa-
tion of two core classes: "phyvec" and "body." The "phyvec" class is responsible for representing
vectors utilized in the simulation, furnishing essential functionalities for performing vector-related
operations and computations. Conversely, the "body" class assumes a pivotal role in simulating
individual entities within the system. This class encapsulates the intrinsic attributes and behaviors
of these entities, facilitating the modeling of their dynamic properties and interactions. Additionally,
a distinct file is devised to contain integrators. Furthermore, an abstract base class denoted as "Sys-
tem" is introduced, incorporating polymorphic behavior. This base class serves as the foundation
for deriving numerous other classes within the system architecture.





3. Two Body system

3.1 Inroduction

This chapter explores the simulation and analysis of two-body systems, investigating various initial
conditions and examining the resulting trajectories.

3.2 Circular Trajectories

Circular orbits are characterized by a constant radius, where the gravitational force acting between
the two bodies is balanced by the centripetal force. The initial conditions play a crucial role in
achieving circular trajectories. By setting equal masses for both bodies and providing appropriate
tangential velocities, circular orbits can be simulated. The following initial conditions are considered
for circular trajectories:

Body 1:
Mass: 1×1021 Position: (0.0,0.0,0.0) Velocity: (0.0,1724.0033713806993,0.0)
Body 2:
Mass: 1×1021 Position: (32336.42425758127,0.0,0.0) Velocity: (0.0,−1149.3355809204663,0.0)

3.3 Elliptic Trajectories

Elliptical orbits represent a common type of motion in the two-body system. These trajectories
exhibit non-zero eccentricity, which determines the shape and orientation of the elliptical path. By
adjusting the initial conditions, such as varying the eccentricity and semi-major axis, a range of
elliptical trajectories can be obtained. The following initial conditions are considered for elliptical
trajectories:

Body 1:
Mass: 1×1021 Position: (0.0,0.0,0.0) Velocity: (0.0,1005.668633305408,0.0)
Body 2:
Mass: 1×1021 Position: (32336.42425758127,0.0,0.0) Velocity: (0.0,−1149.3355809204663,0.0)
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3.4 Hyperbolic Trajectories
Hyperbolic orbits occur when the bodies possess sufficient energy to overcome each other’s
gravitational attraction. In these trajectories, the bodies move along hyperbolas, with the distance
between them continually increasing. By manipulating the initial conditions, such as increasing the
relative velocity or altering the impact parameter, hyperbolic trajectories can be simulated. The
following initial conditions are considered for hyperbolic trajectories:

Body 1:
Mass: 1×1021 Position: (0.0,0.0,0.0) Velocity: (0.0,3160.672847531282,0.0)
Body 2:
Mass: 1×1021 Position: (32336.42425758127,0.0,0.0) Velocity: (0.0,−1149.3355809204663,0.0)

3.5 Plots

Figure 3.1: Lab Frame - Euler Method
Figure 3.2: Lab Frame - Euler-Richardson
Method

Figure 3.3: COM Frame - Euler Method
Figure 3.4: COM Frame - Euler-Richardson
Method

Figure 3.5: Plots of the two-body system in different frames using the Euler method and Euler-
Richardson method. The top row shows the plots in the lab frame, while the bottom row shows the
plots of circular trajectories in the center of mass (COM) frame. The left column corresponds to
the Euler method, and the right column corresponds to the Euler-Richardson method.
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Figure 3.6: Elliptic trajectory in the center of mass (COM) frame using the forward Euler method.

Figure 3.7: Hyperbolic trajectory in the center of mass (COM) frame using the forward Euler
method.





4. Restricted Three Body System

The restricted three-body system is a celestial mechanics problem that involves the interaction of
three celestial bodies, where one body is significantly smaller in mass compared to the other two. In
this chapter, we explore the dynamics of the restricted three-body system and analyze the behavior
of the third body in the rotating frame.

4.1 Problem Setup

The restricted three-body system consists of two primary bodies, referred to as the primary body 1
and primary body 2, and a third body of much smaller mass. The primary bodies exert gravitational
forces on each other, while the third body is influenced by the gravitational fields of the primary
bodies.

To study the dynamics of the system, we consider the system in a rotating frame of reference.
In this frame, the two primary bodies are fixed, and the coordinate system rotates with a constant
angular velocity equal to the average angular velocity of the two primary bodies.

4.2 Contour Plot of Potential in the Rotating Frame

One way to analyze the behavior of the third body in the restricted three-body system is by
examining the potential energy landscape in the rotating frame. The potential energy represents the
gravitational potential experienced by the third body due to the presence of the two primary bodies.

The two primary bodies in the restricted three-body system have the following masses:
Primary Body 1: Mass: 1×1021

Primary Body 2: Mass: 3×1021

Distance between the two primary bodies: 32000

4.3 Tadpole and Horseshoe Orbits

In celestial mechanics, certain regions within a restricted three-body system exhibit fascinating
orbital behaviors known as horseshoe and tadpole orbits.



16 Chapter 4. Restricted Three Body System

4.3.1 Tadpole Orbits
Tadpole orbits are similar to horseshoe orbits but occur around the L4 and L5 Lagrangian points.
In these orbits, the gravitational forces of the primary bodies create stable equilibrium points at
the L4 and L5 points, where the centrifugal force and gravitational forces balance. A smaller body
placed near these points exhibits a tadpole-shaped orbit, with the head of the tadpole corresponding
to the Lagrangian point and the tail extending along the orbit. The following initial conditions are
considered for tadpole orbits (in lab frame):

Body 1:
Mass: 1.4968355×1010

Position: (0.0,0.0,0.0)
Velocity: (0.0,−3.162277660168379×10−2,0.0)
Body 2:
Mass: 1.49833×107

Position: (1.0,0.0,0.0)
Velocity: (0.0,9.994998749374610×10−01,0.0)
Body 3:
Mass: 0.0
Position: (5.065000000000000×10−01,8.725254037844385×10−01,0.0)
Velocity: (−8.725254037844385×10−01,4.749083460498553×10−01,0.0)

4.3.2 Horseshoe Orbits
Horseshoe orbits occur when a smaller body appears to "hover" around the L3 Lagrangian point
of the larger primary body. In this configuration, the gravitational forces of both primary bodies
contribute to the motion of the smaller body, causing it to move in a horseshoe-shaped path with
respect to the larger primary body. As the smaller body approaches the larger one, gravitational
forces decelerate it, causing it to shift to the other side. This results in a repetitive motion resembling
a horseshoe.The following initial conditions are considered for tadpole orbits (in lab frame):

Body 1:
Mass: 1.4969046×1010

Position: (0.0,0.0,0.0)
Velocity: (0.0,−0.030884867,0.0)
Body 2:
Mass: 1.42922e×107

Position: (1.0,0.0,0.0)
Velocity: (0.0,0.99952295,0.0)
Body 3:
Mass: 0.0
Position: (−1.02745,0.0,0.0)
Velocity: (0.0,−1.017985861589397,0.0)

4.4 Plots
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Figure 4.1: Contour plot of potential energy in the rotating frame for the restricted three-body
system. The origin of the rotating frame is at the COM of the two bodies

Figure 4.2: Tadpole orbit in the rotating COM frame
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Figure 4.3: Horseshoe orbit in the rotating COM frame



5. Photons around a Non-Rotating Black Hole

In this chapter, we explore the captivating trajectory of a photon as it orbits a non-rotating black
hole. The immense gravitational influence of the black hole affects the path of the photon, leading
to fascinating observations.

5.1 Problem Setup

We consider a photon emitted from a distant source, traveling towards a non-rotating black hole.
As the photon approaches the black hole, it follows a curved path due to the gravitational field. The
goal is to analyze this trajectory and understand how factors such as the photon’s initial velocity
and distance from the black hole affect its path.

5.2 Initial Conditions

Speed of light: 200
Black Hole:

Mass: 5.993335411022942×1014

Position (of centre): (0.0,0.0,0.0)
Velocity (of centre): 0.0,0.0,0.0

5.2.1 Trajectory 1
Photon:

Position: (5.0,0.0,0.0)
Velocity: (0.0,2.0×1002,0.0)

5.2.2 Trajectory 2
Photon:

Position: (5.0,0.0,0.0)
Velocity: (−1.0×1002,1.732050807568877×1002,0.0)
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5.3 Plots

Figure 5.1: Trajectories of photons around a non-rotating black hole



6. Analemma

Through the analysis of the analemma, we gain a nuanced understanding of the complex interrelation
between the Earth’s axial tilt and its orbital eccentricity. These fundamental astronomical parameters
converge to give rise to the distinctive figure-eight trajectory that charts the Sun’s apparent motion
throughout the year.

6.1 Problem Setup
In our study of the analemma, we consider the apparent motion of the Sun as observed from a fixed
location on a planet’s north pole.

6.2 Initial Conditions
6.2.1 Planet Earth

Semi major axis: 1.495978707×1011

Eccentricity : 0.0167
Time period of revolution: 31557600
Axial Tilt: 0.40910518
Angular position of spring equinox (θ0): 1.3089969
Angle of current position from perihelion: 1.3089969

6.2.2 Planet Mar
Semi major axis: 2.27956×1011

Eccentricity : 0.0935
Time period of revolution: 59356800
Axial Tilt: 0.43964844
Angular position of spring equinox (θ0): 0.5
Angle of current position from perihelion: 0.5
(This is a fictitious planet. Everything except position of spring equinox are Mars’ conditions,
hence the fictitious name Mar)
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6.3 Plots

Figure 6.1: Analemma of Sun as Observed from Earth’s North Pole
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Figure 6.2: Analemma of Sun as Observed from Mar’s North Pole





7. Kirkwood Gaps

Kirkwood gaps are regions in the asteroid belt that are depleted of asteroids due to the gravitational
influence of Jupiter. These gaps occur at specific distances from the Sun, where the orbital period
of an asteroid is a simple fraction of Jupiter’s orbital period.
The gravitational influence of Jupiter causes asteroids in these gaps to experience a periodic force.
This force can perturb the asteroids’ orbits, causing them to be ejected from the belt or to be moved
to other parts of the belt. As a result, these gaps are almost empty of asteroids.

7.1 Problem Setup

To simulate Kirkwood gaps, We will treat the Sun and Jupiter as massive bodies and asteroids as
light bodies. The orbital of Jupiter can be approximated as a circle. Because of their light mass, the
asteroids’ interaction among themselves can be neglected. Thus, each asteroid, Sun, and Jupiter
form an independent Circular Restricted Three Body Problem. The problem of finding Kirkwood
gaps is thus reduced to several independent Circular Restricted Three Body Problems.

7.2 Initial Conditions

Sun: Mass: 1
Position: (0.0,0.0,0.0)
Velocity: (0.0,−2.696559482990327×10−09,0.0)

Jupiter: Mass: 3.774374561100000×10−03

Position: (5.203812938610000,0.0,0.0)
Velocity: (0.0,4.389221587670570×10−08,0.0)

Asteroids:
Mass: 0
Position: Both r and θ are chosen randomly such that r is in between 1.6 to 3.6 AU and θ is in
between 0 to 2π

Velocity: Chosen such that if Jupiter were absent, the asteroids would be in a circular orbit
around the sun.
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Number of asteroids: 1000

7.3 Plots

Figure 7.1: Kirkwood Gaps

7.4 Conclusion
More number of asteroids must be simulated to get Kirkwood gaps.
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