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Techniques Used 
Euler Method of Numerical Integration 
The Euler method is a simple numerical integration technique that approximates the solution of 

ordinary differential equations. It is a first-order method and involves using a forward difference 

formula to estimate the next state of a system. For a given initial position 𝑟0 and velocity 𝑣0, the 

Euler method iteratively calculates the next position 𝑟𝑛 and velocity 𝑣𝑛  using the following 

equations: 

𝑣𝑛+1  =  𝑣𝑛   +  
𝐹(𝑟𝑛 , 𝑣𝑛)

𝑚
Δ𝑡 

𝑟𝑛+1  =  𝑟𝑛  +  𝑣𝑛Δ𝑡 

where 𝐹(𝑟, 𝑣) is the force on the object as a function of object’s position and velocity. 

 

Euler Method is based on approximating an integral as a sum of rectangular areas. As we can see, it’s 

not very precise, but gets more and more precise as we decrease the size of the time step. 
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Euler Richardson Method of Numerical Integration 
The Euler-Richardson method, also known as the semi-implicit Euler method, is an improved version 

of the Euler method. It is a second-order method that provides better accuracy and energy 

preservation. The equations for the Euler-Richardson method are as follows: 

𝑣𝑚𝑖𝑑 =  𝑣𝑛 +
1

2
⋅
𝐹(𝑟𝑛 , 𝑣𝑛)

𝑚
Δ𝑡 

𝑟𝑚𝑖𝑑 = 𝑟𝑛 +
1

2
⋅ 𝑣𝑛Δ𝑡  

𝑣𝑛+1 =  𝑣𝑛 +
𝐹(𝑟𝑚𝑖𝑑 , 𝑣𝑚𝑖𝑑)

𝑚
Δ𝑡 

𝑟𝑛+1 =  𝑟𝑛 + 𝑣𝑚𝑖𝑑Δ𝑡 

Euler Richardson Method is based on approximating the integral as a sum over trapeziods rather 

than rectangles. This gives us much better accuracy for the same time step, and hence is much more 

effective. 
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Celestial Orbits 
Celestial orbits are the graceful paths that celestial bodies, such as planets and comets, follow in 

space due to the gravitational forces between them. Two primary types of orbits are elliptical and 

hyperbolic. Elliptical orbits, characterized by an eccentricity between 0 and 1, exhibit periodicity 

around a central body. The total energy of an elliptical orbit is negative, with the kinetic energy 

changing as the distance varies. Hyperbolic orbits, on the other hand, have eccentricity greater than 

1 and indicate escape trajectories from the central body. Their total energy is positive, with the 

kinetic energy increasing as distance increases. These orbits are governed by the polar conic 

equation, 𝑟  =  
𝑝

1+𝑒⋅cos𝜃
, where 𝑟 is the distance from the centre, 𝑝 is the semi-latus rectum, 𝑒 is the 

eccentricity, and 𝜃 is the polar angle. Understanding the nuances of these orbits and their associated 

energies is essential for comprehending the dynamics of celestial objects within our solar system and 

beyond. 

 

 
  



   

 

6   

 

Elliptical Orbit Simulations 
Using suitable initial conditions, we simulated elliptical orbit using both the Techniques mentioned 

above  

 

As we can see, Euler Richardson method gives much better accuracy in comparison to the Euler 

Method Plot 

We can also verify this by looking at the Energy vs Time plots of both of both the simulations 

 

The energy is nearly constant in Euler Method, which is what we expect from theoretical calculations 

as well. 
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Hyperbolic Orbit Simulations 
Similar to Elliptical Orbit Simulations, we use initial conditions and both the techniques to arrive at 

the following simulations 

 

Unlike Elliptical Orbit simulations, we can’t tell apart the 2 just by the plots, so we resort to Energy vs 

Time plots 

 

As we can see, Euler method energy has variations on the order of 100, whereas Euler Richardson 

method energy has fluctuations on the order of 0.001, thus again making Euler Richardson much 

more accurate. 
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Reduced 3 Body System 
Three-body systems in celestial mechanics involve the complex interactions of three celestial bodies 

influenced by gravitational forces. These systems can encompass scenarios such as a planet, moon, 

and star or multiple stars orbiting each other. Analysing the motion and stability of such systems is 

challenging due to the intricate gravitational interactions and the absence of exact solutions in most 

cases. The study of three-body systems provides insights into celestial mechanics, planetary 

dynamics, and our understanding of the universe's intricate dance of gravitational forces. 

A Reduced 3 Body System occurs when one of the 3 bodies is negligible in mass as compared to the 

other 2, and hence has little effect on the motion of the massive bodies. 

We will attempt to plot the potential energy field of such a system as experienced by the small mass. 

The Equation of potential energy is: 

𝑉(𝑟) = −
𝐺 ⋅ 𝑚 ⋅ 𝑀1

|𝑟 − 𝑟1|
−
𝐺 ⋅ 𝑚 ⋅ 𝑀2

|𝑟 − 𝑟2|
  

where 𝐺 represents the gravitional consta nt and  represent the position vectors of the 3 masses 

involved 
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Lagrange Points in Solar System 
Lagrange points are unique positions within a two-body or multi-body system where the 

gravitational forces of the participating bodies create points of equilibrium. In the context of the 

Sun-Earth system, five Lagrange points, labeled L1 to L5, exist. 

L1, L2 and L3 are situated along the line connecting the Sun and Earth. L1 and L2 are very close to 

Earth, whereas L3 is diametrically opposite to earth and unstable in nature 

L4 and L5 are located at equilateral triangles formed by the Earth and Sun, creating stable points that 

correspond to the apexes of equilateral triangles. These points have been associated with the Trojan 

asteroids, co-orbiting with a larger celestial body. These are also responsible for many interesting 

orbits like the Tadpole and Horseshoe orbits 
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Tadpole & Horseshoe Orbits 
Tadpole orbits involve a small body orbiting one of the Lagrange points in a tadpole-like motion. As 

the larger body moves along its orbit, the smaller body appears to oscillate around the Lagrange 

point. This peculiar dance results from the interaction of gravitational forces and is a manifestation 

of the delicate balance between attractive and repulsive forces. 

The equations representing the forces in such lagrange fields are: 

𝑑2𝑥

𝑑𝑡2
−
2𝑑𝑦

𝑑𝑡
=
𝜕𝑈

𝜕𝑥
 

𝑑2𝑦

𝑑𝑡2
+
2𝑑𝑥

𝑑𝑡
=
𝜕𝑈

𝜕𝑦
 

𝑈 =
1

2
⋅ (𝑥2 + 𝑦2) +

𝜇1
𝑟1
+
𝜇2
𝑟2

 

where 𝑈 represents pseudo potential of the system and 𝜇1, 𝜇2 represents 
𝑚1

𝑚1+𝑚2
,

𝑚2

𝑚1+𝑚2
 

Using these Equations along with correct initial conditions (slight pertubation from L4) and Euler 

Richardson Method, we get 

 

Horseshoe orbits, on the other hand, occur when a small body orbits around a Lagrange point in a 

horseshoe-shaped path. This phenomenon arises due to the interplay of gravitational forces from 

both the larger and smaller bodies, causing the small body to move closer and farther from the 

Lagrange point in a cyclic manner. 

Using the same equations and slightly different initial conditions, we get 
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Photons near a Black hole 
A black hole is a remarkable cosmic entity born from the gravitational collapse of a massive star. It 

possesses an incredibly dense core, called the singularity, surrounded by an event horizon beyond 

which nothing, not even light, can escape due to the intense gravitational pull. This phenomenon 

arises from the extreme curvature of spacetime caused by the immense mass concentration, 

creating a gravitational well so profound that it distorts the very fabric of spacetime itself. 

The colossal gravitational force exerted by a black hole profoundly affects the trajectory of photons, 

the particles of light. As photons pass close to a black hole, the curvature of spacetime around it 

causes their paths to warp, bending them from their originally straight trajectory. This phenomenon, 

known as gravitational lensing, is a consequence of Einstein's General Theory of Relativity. The 

extent of bending depends on the black hole's mass and proximity, resulting in the mesmerizing 

visual effect of light curving around the invisible gravitational behemoth. 

We can model the trajectory of these photons using the energy equation: 

𝐸 = (
𝑑𝑟

𝑑𝑡
)
2

+
𝑙2

2𝑟2
−
𝑙2𝑟𝐵𝐻
2𝑟3

 

where 𝑟𝐵𝐻 =
2𝐺𝑀𝐵𝐻

𝑐2
 is the event horizion radius of the black hole and 𝑙 is the angular momentum per 

unit mass. 

Using this equation, we get the following plot 
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Analemma 
An analemma is a captivating celestial pattern that results from the combined effects of Earth's axial 

tilt and its elliptical orbit around the Sun. This figure-eight-shaped curve traces the Sun's apparent 

position in the sky at the same local solar time throughout the year. The analemma captures the 

changing declination and right ascension of the Sun, creating a visual representation of how the 

Sun's position varies over different days. This celestial phenomenon offers a vivid illustration of the 

intricate interplay between Earth's axial tilt and orbital eccentricity, providing insights into the 

complex dynamics that shape our planet's relationship with the Sun across the changing seasons. 

We can model the position of sun as seen from a planet’s sky using spherical trigonometry  

𝛿 = arcsin(𝑠𝑖𝑛𝜀 ⋅ 𝑠𝑖𝑛𝜆) 

𝛼 = arccos (
𝑐𝑜𝑠𝜆

𝑐𝑜𝑠𝛿
) 

∫
𝑑𝜃

(1 + 𝑒𝑐𝑜𝑠𝜃)2

𝜃

𝜃0

=
2𝜋𝑡

𝑇(1 − 𝑒2)
3
2

 

𝜆 = 𝜃 − 𝜃0 

where 𝜀 is the axial tilt of planet, 𝜆 is ecliptic latitude of sun, 𝛿 is the declination of sun, 𝛼 is the right 

ascension of sun, 𝑒 is the eccentricity of planet’s orbit. 

Simulating from the above equations gives us 
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Kirkwood Gaps 
Kirkwood gaps are intriguing voids within the asteroid belt, a region located between the orbits of 

Mars and Jupiter. Discovered by astronomer Daniel Kirkwood in the mid-19th century, these gaps 

are regions where the density of asteroids is notably lower compared to the surrounding areas. The 

gaps are caused by a resonant interaction between the asteroids and Jupiter's gravitational 

influence. As asteroids orbit the Sun, Jupiter's powerful gravitational pull perturbs their orbits, 

creating specific resonances where the asteroid's orbital period is in a simple integer ratio with 

Jupiter's orbital period. Due to these resonances, asteroids experience gravitational interactions that 

either eject them from the gap or push them into different orbital configurations, resulting in the 

observed gaps. 

The most prominent of these gaps, known as the "Kirkwood gaps," are found at specific orbital 

distances, such as 2.06, 2.5, and 2.82 astronomical units (AU) from the Sun. These gaps indicate 

regions where the orbital dynamics are less stable, causing asteroids to migrate away from these 

orbital resonances over time. The discovery and study of Kirkwood gaps have significantly 

contributed to our understanding of the complex gravitational interactions in the solar system and 

the long-term evolution of asteroid orbits. 

We attempted to recreate these kirkwood gaps using a simplistic setup. We took 10,000 asteroids 

orbiting the sun in a uniform radial distribution throughout, introduced Sun’s and Jupiter's gravity 

and tried to simulate the system for 1 million years. Since the program was very big and memory 

intensive however, we needed to optimise it heavily in C++. We ended up with partial results as 

follows 

 


