
Solar System Dynamics
Krittika Summer Projects 4.0
Suryansh Srijan

Solar System
Dynamics

Krittika Summer Projects 4.0
Summer 2023

Project Student: Mentors:Suryansh Srijan Adarsh Reddy MadurComputer Science and Engineering Dhananjay RamanIndian Institute of Technology Bombay
Cover image: Edge of Night by Paul Wilson
Template style: Thesis style by Richelle F. van Capelleveen
Template licence: Licenced under CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/

Abstract
This project (as its name suggests) delves into solar system dynamics, focusingon simulating n-body motion and interesting phenomena such as analemma andKirkwood gaps. Through computational simulations and analytical methods, theproject explores celestial bodies’ gravitational interactions, revealing intricateorbits and stability. It investigates the Earth’s axial tilt and elliptical orbit’s influenceon the analemma, uncovering the underlying causes of its shape. The projectalso take a detour into general relativity, and shows how different it is fromNewtonian gravity. Additionally, the project examines the resonance effectsshaping Kirkwood gaps in the asteroid belt. By comprehensively studying thesephenomena, the report advances our understanding of solar system mechanicsand their significant role in shaping celestial bodies’ motions and distributions.

iii

Contents
Abstract . iii

1 Theory . 1
1.1 Introduction 1
1.2 N-Body Motion 1
1.3 Circular Restricted three-body problem 2
1.4 Analemma 3
1.5 Gravity near massive bodies 3
1.6 Kirkwood Gaps 5
1.7 Numerical integration methods 6

2 Results and Code . 7
2.1 Two body simulations 7
2.2 N-body simulations 10
2.3 Analemma 14
2.4 Photons near black-holes 15
2.5 Kirkwood Gaps 18

3 References . 23

iv

1. Theory
1.1 IntroductionThe goal of this project is to simulate interesting phenomena in the Solar Systemdue the motion of its individual components. For this, we need to understandthe concepts of orbital motion and different ways of numerical integration whichwill allow us to efficiently reach our goal. The various phenomena that we willsimulate in this project are:1. N-Body Motion

2. Circular Restricted Three-BodyMotion (A Special Case) and Lagrange points
3. Analemma
4. Gravity due to large dense masses such as Black Holes (A deviation fromSolar System but an interesting one)
5. Kirkwood Gaps

1.2 N-Body MotionConsidering a case of N bodies, for any two bodies i and j , according to Newton’sLaw of universal gravitation:
®Fi j = −

Gmim j (®ri − ®rj)
| ®ri − ®rj |3

, ®Fj i = −
Gmim j (®rj − ®ri)

| ®ri − ®rj |3where,
G = Universal Gravitaional constant,

mi ,m j = masses of the two bodies,
®Fi j , ®Fj i = Force exerted on i by j and vice verca,
®ri , ®rj = Position vectors of i and j.

More parameters related to motion are:
1

1.3. Circular Restricted three-body problem 2
• Kinetic Energy: KE =

∑N
i=1

1
2mi | d ®rid t |

2

• Potential Energy: PE =
∑N

t=1

∑N
j>i −

Gmim j

| ®ri−®rj |• Energy: E = KE + PE

• Linear Momentum: ®P =
∑N

i=1mi
d ®ri
d t

• Angular Momentum: ®L =
∑N

i=1mi (®ri × d ®ri
d t)Under absence of external force and torque the energy, linear momentum andangular momentum remain conserved. To simulate N-body motion and otherattributes related to it, we apply the above formulae.

1.3 Circular Restricted three-body problemIn the case of two bodies, we can precisely find their equations of motion giventhe initial conditions. But in case of three or more bodies, the situation becomeschaotic.
The circular restricted three-body problem has two large masses in a circular orbitat their common center of mass. A third relatively smaller body is then introduced.
We will look at a case where all the bodies lie on the X-Y plane. There aretwo large bodies with mass m1 and m2 with their center of mass at the origin,which are moving around it in a circle, and a third small body with a mass m3being p1 and p2 distant from the two bodies respectively.
We will shift to a rotaional frame of reference, centered at the origin rotatingcounter-clockwise with angular velocity ω =

√
G (m1+m2)
(r1+r2)3 , such that the positionsof the larger bodies remain fixed. We will now study the motion of the thirdsmaller body. Its acceleration in this frame is given by:

d 2x

d t 2
= 2ω

dy

d t
+ ω2x − Gm1(x − x1)

p31
− Gm2(x − x2)

p32

d 2y

d t 2
= −2ωdx

d t
+ ω2y − Gm1(y − y1)

p31
− Gm2(y − y2)

p32The kinetic and potential energy of this body is given by:
KE =

1

2
m3(¤x 2 + ¤y 2 + 2xω ¤y − 2yω ¤x + ω2(x 2 + y 2))

PE = −Gm1m3

p1
− Gm2m3

p2

1.4. Analemma 3
These equations will prove handy to do fastercalculations, in case of simulating asteroids forkirkwood gaps.
There are somethings called Lagrange points.In the rotational frame of the two bodies, thesepoints remain stationary at all times. There are5 lagrange points as shown in the figure. Outof these L1, L2 and L2 are points of unstableequilibrium.

1.4 AnalemmaAn analemma is a diagram showing the position of the Sun in the sky as seen froma fixed location on Earth at the same mean solar time, as that position varies overthe course of a year. Analemma looks like a lopsided "8". The reason being thatit is the combined effect of the tilt of the Earth’s axis and elliptical orbit of the Earth.
We will try to find analemma observed on Earth’s north pole (just to simplifyconversion between equatorial and horizontal co-ordinates). To do this, we cal-culate the α (Right ascension) and δ (Declination) of Sun on various days andthen find the corresponding altitude and azimuth.
First we find the ecliptic longitude of Sun (λ). Since, we have to find it on differentdates, we need to solve the following differential equation:

¤θ =
2π (1 + e cos θ)2

T (1 − e2)3/2

This equation is obtained by using the equation of ellipse and the expression ofareal velocity in two body elliptical orbits. e is the eccentricity of Earth’s orbitequal to 0.0167. The ecliptic longitude λ = θ−θ0, where θ0 is the angular distanceof the vernal equinox and Earth’s perihelion with respect to the Sun and θ0 ≈ 77◦.
Next, δ = sin−1 (sinλ sin ϵ) and α = tan−1 (tanλ cos ϵ). And Altitude(a) = δ andAzimuth(A) = α − ωt , where ω = 2π/T , t is the time of observation and ϵ is theinclination of the Earth’s axis with respect to the vertical. We then plot A vs a toobtain analemma.

1.5 Gravity near massive bodiesWe know that Newtonian gravity falls short in explaining multiple phenomenasuch as deviation of light due to massive celestial objects, and the precisionof Mercury’s orbit around the Sun. These things are explained by general relativity.

1.5. Gravity near massive bodies 4
In general relativity, the metric tensor (denoted by gµν) is the fundamental objectof study. The metric captures everything about spacetime. It is used to definenotions such as time, distance, volume, curvature, angle, and separation of thefuture and the past.
In general relativity, we deal with 4d space i.e., we consider time as a co-ordinateand the spacetime interval between two points (analogous to "distance" in 3dspace) is given by1

ds2 = gµνdx
µdxν = −c2d t 2 + dx 2 + dy 2 + dz 2, xµ ∈ (t , x , y , z)

in the case of flat spacetime. This can be converted to polar co-ordinates as:
ds2 = gµνdx

µdxν = −c2d t 2 + dr 2 + r 2dθ2 + r 2 sin2 θ dφ2, xµ ∈ (t , r , θ,φ)

The metric gµν in this case is given by ©«
−c2 0 0 0
0 1 0 0
0 0 r 2 0
0 0 0 r 2 sin2 θ

ª®®®¬.The metric tensor in the case of uncharged, non-rotating body, centered atthe origin is given by the Schwarzschild metric:
gµν =

©«
−(1 − 2GM

r c2
) 0 0 0

0 (1 − 2GM
r c2

)−1 0 0

0 0 r 2 0
0 0 0 r 2 sin2 θ

ª®®®®¬
for co-ordinates (ct , r , θ,φ)

Here, the space is said to be curved due the mass of the body M .
The motion of bodies in a metric is given by a geodesic (a path that a parti-cle which is not accelerating would follow for example, a straight line in flat space,a great circle on a sphere). The general equation of a geodesic is2:

d 2xµ

dλ2
= −Γµ

αβ

dxα

dλ

dx β

dλwhere λ is a path parameter that increases monotonically along the particle’spath and Γµ
αβ

=
g µν

2

[∂gαν
∂x β

+
∂gβν

∂xα
−
∂gαβ

∂xν

] , g µν is the inverse of gµν
For simplicity, we will consider a photon in X-Y plane (θ = π/2). The geodesicequations in this case of a Schwarzschild metric after simlification are:

E =
(
1 − rs

r

) d t
dλ
, rs =

2GM

c2
Energy conservation

1whenever greek letters are introduced, it implicitly implies summation over all co-ordinates.2Here summation is implied only on α and β

1.6. Kirkwood Gaps 5
L = r 2

dφ

dλ
Angular Momentum conservation

1

2

(dr
dλ

)2
+Vef f =

c2E 2

2
, Vef f =

c2

2

(
1 − rs

r

)
+ L2

2r 2
− L2rs

2r 3The L2rs
2r 3
is different from newtonian gravity. This Vef f leads us to write theacceleration of a photon as:

®a = −3L
2rs ®r
2r 5This formula will be used later to simulate orbits of photons around black holes.

1.6 Kirkwood GapsA Kirkwood gap is a gap or dip in the distribution of the semi-major axes (orequivalently of the orbital periods) of the orbits of main-belt asteroids. Theycorrespond to the locations of orbital resonances with Jupiter. Two bodies are

Figure 1.1: Histogram showing the four most prominent Kirkwood gaps and a possible
division into inner, middle and outer main-belt asteroids.

1.7. Numerical integration methods 6
said to be in orbital resonance if their orbital periods can be expressed as a ratioof two simple integers. The main gaps observed in the asteroid belt are at:
• 3.279 AU (2:1 resonance)
• 2.502 AU (3:1 resonance)
• 2.825 AU (5:2 resonance)
• 2.958 AU (7:3 resonance)

1.7 Numerical integration methodsIn this project we will be using numerical methods to solve inital value problems.Most of the time we will dealing with 2nd orger differential equations of the form:
d 2®r (t)
d t 2

= f (®r , t), ®r (0) = ®r0,
d ®r (0)
d t

= ®v0

To solve these, we will use the following three algorithms:
1. Euler: The following algorithm is used to solve for ®r at times with a timestep ∆t :

v (t + ∆t) = v (t) + a (t) · ∆t
r (t + ∆t) = r (t) + v (t) · ∆t

2. Euler-Chromer: This is a slight modification of Euler method and is alsocalled the backward-Euler method:
v (t + ∆t) = v (t) + a (t) · ∆t

r (t + ∆t) = r (t) + v (t + ∆t) · ∆t

3. Euler-Richardson: In this, instead of using v (t) or v (t + ∆t) to calculare r ,we use the v at the mid of the time step:
a (t) = f (r (t),v (t))

vmid = v (t) + a (t) · ∆t/2
rmid = r (t) + v (t) · ∆t/2
amid = f (rmid ,vmid)

v (t + ∆t = vmid + amid · ∆t/2)
r (t + ∆t) = r (t) + vmid · ∆t

I have used Euler-Chromer algorithm for most of the simulations. But I have usedEuler-Richardson for simulating asteroids to obtain a greater accuracy.

2. Results and Code
Most of the coding is done in python, due to ease of plotting and libraries likenumpy. But we shift to C with CUDA to use parallel processing for asteroidsimulation.

2.1 Two body simulationsSimulating two-body motion is relatively simple. First we define a particle class:
import math
import numpy as np
import matplotlib.pyplot as plt

class Particle:
def __init__(self, mass,r,v): # Constructor

self.mass = mass
self.pos = r
self.vel = v

def speed(self): # Returns speed of the particle
return math.sqrt(self.vel[0]**2+self.vel[1]**2)

def update(self, step, f):
Updates the particle using Euler-Chromer algorithm
self.vel = self.vel + f*step/self.mass
self.pos = self.pos + step*self.velI make another class for two-body simulation and plotting the gravitational po-tential due to the two bodies

class GravSimul_twobody:
global G
G=6.674e-11

def __init__(self, pp1, pp2): # Constructor
self.p1 = pp1

7

2.1. Two body simulations 8
self.p2 = pp2

def dist(self):
Returns distance between the two bodies

def calcF(self):
Calculates force for 1 body which can also be used for 2nd body

def Update(self,step):
Updates the two bodies with time step

def energy(self):
Returns total energy

def simulate(self, del_t, num):
Simulate motion and also plot the position of the two bodies
along with total energy vs time plot

def contourplot(self) :
Create contour plot of the graviational potential in
inertial frame and also in rotational frame
for reduced circular 3-body problem

I obtained the following orbits for the following initial conditions.
p1 = Particle(2e30,np.array([0,0]),np.array([0,0]))
p2 = Particle(5.96e24,np.array([1.5e7,0]),np.array([0,3e6]))

And the potential due two these particles:

2.1. Two body simulations 9

p1 = Particle(2e30,np.array([0,0]),np.array([0,0]))
p2 = Particle(5.96e24,np.array([1.5e7,0]),np.array([-2e6,3e6]))

p1 = Particle(2e30,np.array([0,0]),np.array([0,0]))
p2 = Particle(5.96e24,np.array([0.9e7,1e7]),np.array([-2e7,-2e7]))

2.2. N-body simulations 10
p1 = Particle(2e30,np.array([0,0]),np.array([0,-1e6]))
p2 = Particle(6e29,np.array([1.5e7,0]),np.array([0,3e6]))

And the potential due two these particles:

2.2 N-body simulationsI used the same particle class but a different n-body simulation class.
class GravSimul_nbody:

global G
G = 6.674e-11
num = 0
p = []
def __init__(self,n:int,m,r,v): # Constructor

self.num = n
self.p = []
for i in range(n):

self.p.append(Particle(m[i],r[i],v[i]))

2.2. N-body simulations 11
@staticmethod
def dist(a, b):
Returns distance between two particles a and b

@staticmethod
def angle(a, b):
Returns the angle the displacement vector
of a and b makes with the x axis

def calcF(self,i:int):
Calculates the force experienced by the
ith particle due to all other particles

def energy(self):
Returns the total energy of the system

def Update(self,del_t):
Updates the parametters of all the parameters after given time step

def simulate(self,del_t,steps):
Simulates the motion of all the particles
and also plot their positions with time

def simulate_restricted(self, del_t, steps):
In this function, we do the same simulation as before
the first two particles are the heavy particles of the system
the rest are lighter
the parameters of the heavy bodies should be of a circular orbit
based on that we plot the positions of
all the small bodies in the rotaional frame
by rotating their positions about the centre of mass
by the angle theta which is angular_velocity*time_elapsedA beautiful example of a 4-body system:

m = np.array([2e30,2e30,2e30,2e30])
r = np.array([np.array([1.0e10,1.0e10]),

np.array([-1.0e10,1.0e10]),
np.array([1.0e10,-1.0e10]),
np.array([-1.0e10,-1.0e10])])

v = np.array([np.array([-4.0e4,4.0e4]),
np.array([-4.0e4,-4.0e4]),
np.array([4.0e4,4.0e4]),
np.array([4.0e4,-4.0e4])])An example of Lagrange points and how they remain stationary in rotational frameand are not stationary even with small deviation:

2.2. N-body simulations 12

m = np.array([1.98847e30,5.9722e24,6e10,4e6,2e6,2e6,2e6])
r = np.array([np.array([0.0,0.0]),

np.array([1.49598e11,0.0]),
np.array([7.48e10,1.2956e11]),
np.array([7e10,-1.2956e11]),
np.array([1.481e11,0.0]),
np.array([1.511e11,0.0]),
np.array([-1.496e11,0.0])])

v = np.array([np.array([0.0,0.0]),
np.array([0.0,2.978446e4]),
np.array([-2.579e4,1.489e4]),
np.array([2.579e4,1.489e4]),
np.array([0.0,2.948e4]),
np.array([0.0,3.008e4]),
np.array([0.0,-2.978e4])])

ob = GravSimul_nbody(7,m,r,v) ob.simulate_restricted(10000,3000)

Next are some special orbits in restricted three body problem. Tadpole orbit:

2.2. N-body simulations 13
m = np.array([2e30,2e27,6e7,6e7])
r = np.array([np.array([0.0,0.0]),

np.array([1.5e7,0.0]),
np.array([7.5e6,12990381.056766579701456]),
np.array([7.62e6,13110381.056766579701456])])

v = np.array([np.array([0.0,0.0]),
np.array([0.0,2984554.461445348350461]),
np.array([-2584699.982589855630612,1492277.230722674175231]),
np.array([-2608576.418281418417416,1516153.666414236962034])])

Horseshoe orbit:
m = np.array([2e30,1.90775e27,6e7,6e7,6e7])
r = np.array([np.array([0.0,0.0]),

np.array([1.5e7,0.0]),
np.array([7.5e6,12990381.056766579701456]),
np.array([7.5e6,-12990381.056766579701456]),
np.array([-1.541175e7,0.0])])

v = np.array([np.array([0.0,0.0]),
np.array([0.0,2984485.698128462021083]),
np.array([-2584640.431810583589904,1492242.849064231010542]),
np.array([2584640.431810583589904,1492242.849064231010542]),
np.array([0.0,-2946075.367193548714872])])

2.3. Analemma 14
2.3 AnalemmaI simply used the formulas used in the theory to simulate analemma.

from scipy.integrate import solve_ivp

num = 365
eps = 23.44*math.pi/180
w = 2*math.pi/num
t = np.arange(num)
lam = w*t
dec = np.zeros(num,dtype="float64")
alpha = np.zeros(num,dtype="float64")
alt = np.zeros(num,dtype="float64")
azi = np.zeros(num,dtype="float64")

Using scipy to solve differential eqn for theta
theta0 = 77*math.pi/180
def dth_dt(t, y):

e = 0.0167
return (2*math.pi*((1+e*math.cos(y+theta0))**2))/(num*((1-e**2)**(1.5)))

sol = solve_ivp(dth_dt,[0,num],[0],t_eval=t)

lam = sol.y.flatten()
for i in range(num):

x = 0
if lam[i] > 3*math.pi/2: x = 2
elif lam[i] > math.pi/2: x = 1
dec[i] = math.asin(math.sin(eps)*math.sin(lam[i]))

2.4. Photons near black-holes 15
alpha[i] = math.atan(math.tan(lam[i])*math.cos(eps)) + math.pi*x
alt[i],azi[i] = dec[i],alpha[i]-w*i

plt.scatter(np.rad2deg(azi),np.rad2deg(alt),s = 1)
plt.title("Analemma (both tilt and elliptical orbit considered)")
plt.show()

2.4 Photons near black-holesWe setup the initial condition of the photon to be moving towards the black holefrom the x-direction at some impact parameter p · rbh . To simulate this I create aclass Photon which accepts an impact parameter and sets an initial position at
(200rbh, prbh) (200 is assumed to be far enough).
The radius of shadow of a black hole is found to be 3

√
3

2 rbh ≈ 2.598rbh . Thus, for
p < 2.598 the photon should go inside the black hole.
c = 3e8
class Photon:

def __init__(self, r, p): # Constructor
self.pos = np.array([200*r,p*r])
self.dir = np.array([-1,0],dtype="float64")
self.rbh = r
self.l = c*p*r

def r(self): # Returns polar co-ordinate r
return math.sqrt(self.pos[0]**2+self.pos[1]**2)

def theta(self): # Returns polar co-ordinate theta
return math.atan2(self.pos[1],self.pos[0])

def speed(self):
Returns speed of photon due to
the Schwarzchild metric in units of c

th = self.theta()
vr = self.dir[0]*math.cos(th) + self.dir[1]*math.sin(th)
vth = self.dir[1]*math.cos(th) - self.dir[0]*math.sin(th)
x = 1-self.rbh/self.r()
return math.sqrt(vr**2+vth**2*x)

def update(self,del_t): # Updates photon parameter after time step
a = np.zeros(2,dtype="float64")
a = -1.5*(self.l**2)*self.rbh*self.pos/(self.r()**5)
Used the acceleration obtained in the theory section
self.dir += a*del_t/c

2.4. Photons near black-holes 16
self.pos += self.dir*c*del_t

Mbh = 1e38
Rbh = 6.674e-11*Mbh/(c**2)
n = 9
steps = 100000
del_t = 1
para = np.array([4.5,4,3.5,3.0,2.8,2.675,2.6,2.59,2])
data = np.zeros(((2*n),steps+1),dtype="float64")
speed = np.zeros((n,steps+1),dtype="float64")
time = del_t*np.arange(steps+1)
fig, ax = plt.subplots()
ax.add_patch(plt.Circle((0,0),Rbh,color="black"))
ax.add_patch(plt.Circle((0,0),1.5*Rbh,color="black",fill=False))
for i in range(n):

ph = Photon(Rbh,para[i])
data[2*i][0] = ph.pos[0]
data[2*i+1][0] = ph.pos[1]
speed[i][0] = ph.speed()
for j in range(steps):

if ph.r()>Rbh:
ph.update(del_t)
speed[i][j+1] = ph.speed()

data[2*i][j+1] = ph.pos[0]
data[2*i+1][j+1] = ph.pos[1]

max = np.max(para) + 1
ax.set_xlim([-1.5*max*Rbh, 1.5*max*Rbh])
ax.set_ylim([-1.5*max*Rbh, 1.5*max*Rbh])
for i in range(n):

ax.plot(data[2*i],data[2*i+1],label=para[i])
ax.set_aspect("equal")
plt.legend()
plt.show()
for i in range(n):

plt.plot(time,speed[i],label=para[i])
plt.xlim(47000,53000)
plt.ylim(0.997,1.003)

plt.title("Speed of photons according to Schwarschild Metric")
plt.show()

There is variation in speed only when the photens are near the blackhole. After aphoton goes inside it, its speed is set to 0.

2.4. Photons near black-holes 17

Figure 2.11: Trajectories of photons with various impact parameters under the influence
of a black hole

2.5. Kirkwood Gaps 18
2.5 Kirkwood GapsSimulating Kirkwood gaps is quite a heavy task as it involves finding parametersfor >1000 asteroids and for >1000 years of time with a relatively small time step ≈days. So, I shifted to CUDA for parallel processing of asteroids and ignored massof asteroids (as asteroid-asteroid iinteraction is negligible). It is also assumedthat Jupiter is in a circular orbit, so we can fix its position. The CUDA code forthe following:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>
#include <cstdlib>
#include <math.h>
#include <time.h>

double drand() {
return (double)rand()/(double)RAND_MAX;

}

// function runs for every epoch on GPU
__global__ void calcKernel(double *x, double *y, double *vx,

double *vy, int n_ast, long long n_step,
double del_t, double r1, double r2, double w,
double w2, double c1, double c2) {

int i = blockIdx.x*blockDim.x+threadIdx.x;
if(i<n_ast) {

for(int j = 0;j<n_step/10;++j) {
// Implements Euler-Richardson technique
double p1 = (x[i]-r1)*(x[i]-r1)+y[i]*y[i],
p2 = (x[i]-r2)*(x[i]-r2)+y[i]*y[i],
ax = 2*w*vy[i] + w2*x[i] - c1*(x[i]-r1)*rsqrt(p1)/p1

- c2*(x[i]-r2)*rsqrt(p2)/p2,
ay = -2*w*vx[i] + w2*y[i] - c1*y[i]*rsqrt(p1)/p1

- c2*y[i]*rsqrt(p2)/p2;
double vxmid = vx[i] + ax*del_t/2;
double vymid = vy[i] + ay*del_t/2;
double xmid = x[i] + vxmid*del_t/2;
double ymid = y[i] + vymid*del_t/2;
p1 = (xmid-r1)*(xmid-r1)+ymid*ymid;
p2 = (xmid-r2)*(xmid-r2)+ymid*ymid;
ax = 2*w*vymid + w2*xmid - c1*(xmid-r1)*rsqrt(p1)/p1

- c2*(xmid-r2)*rsqrt(p2)/p2;
ay = -2*w*vxmid + w2*ymid - c1*ymid*rsqrt(p1)/p1

2.5. Kirkwood Gaps 19
- c2*ymid*rsqrt(p2)/p2;

x[i] += vxmid*del_t;
y[i] += vymid*del_t;
vx[i] += ax*del_t;
vy[i] += ay*del_t;

}
}

}

int main() {
clock_t start,end;
double cpu_time_used;
srand(0);

double pi = 3.14159265358979323851;
const int n_ast = 16384;
double m1 = 1.989e30, m2 = 1.898e27, rj = 7.78479e11,

r1 = -m2*rj/(m1+m2), r2 = m1*rj/(m1+m2),
G = 6.674e-11, w2 = G*(m1+m2)/pow(rj,3),
w = sqrt(w2), c1 = G*m1, c2 = G*m2;

// constants to make calculations faster
long long n_step = 262800000, del_t = 14400;
// A total time of approx 1,20,000 years

// Allocate memory for parameters of asteroids
double *x, *y, *vx, *vy;
cudaMallocManaged(&x, n_ast * sizeof(double));
cudaMallocManaged(&y, n_ast * sizeof(double));
cudaMallocManaged(&vx, n_ast * sizeof(double));
cudaMallocManaged(&vy, n_ast * sizeof(double));

for(int i=0;i<n_ast;++i) {
// Initialize the position and velocities
// of the asteroids

}

// file pointer for printing in csv file
FILE *fptr;
if ((fptr = fopen("outcuda1.csv","w")) == NULL){

printf("Error! opening file");
exit(1);

}

start = clock();
for(int j=0;j<n_ast;++j) {

2.5. Kirkwood Gaps 20
// Semi-major axis
double a = 1/(2*rsqrt(x[j]*x[j]+y[j]*y[j])

-((vx[j]-w*y[j])*(vx[j]-w*y[j])
+(vy[j]+w*x[j])*(vy[j]+w*x[j]))/(c1));

fprintf(fptr, "%6.9e, %6.9e, %6.9e \n",x[j],y[j],a);
}

// Calculates and saves the position of asteroids
// after every epoch
for(int i=0;i<10;++i) {

// Runs the code on GPU
calcKernel <<<64,256>>> (x,y,vx,vy,n_ast,n_step,

del_t,r1,r2,w,w2,c1,c2);
cudaDeviceSynchronize();

printf("%d ",i);
for(int j=0;j<n_ast;++j) {

double a = 1/(2*rsqrt(x[j]*x[j]+y[j]*y[j])
-((vx[j]-w*y[j])*(vx[j]-w*y[j])
+(vy[j]+w*x[j])*(vy[j]+w*x[j]))/(c1));

fprintf(fptr, "%6.9e, %6.9e, %6.9e \n",x[j],y[j],a);
}

}
end = clock();

cudaFree(x);
cudaFree(y);
cudaFree(vx);
cudaFree(vy);

cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
printf("%4.3f sec",cpu_time_used);
return 0;

}

I used two methods of initializing the positions and velocities. First method:assumed all the asteroids are in circular orbit with the Sun with radius between1.8 AU and 3.6 AU. This gave me the following result for n_ast = 35840, del_t =53200 and n_steps = 43800000 which is approxiamately for 60000 yrs. Wecan clearly see the KirkWood gap at 2:1 orbital resonance. However nothing isobserved at other orbital resonances.
The second method was to make a more realistic case, with all the asteroidshaving semi-major axes between 1.8 AU and 3.6 AU, and eccentricity less than
0.35. For n_ast = 16384, del_t = 14400 and n_steps = 262800000 which is ap-

2.5. Kirkwood Gaps 21

(a) Position of asteroids, the Sun and Jupiter (b) Histogram of semi-major axes of asteroids

Figure 2.12: Asteroids after 60,000 years of simulation using the first initialization method

Figure 2.13: This plot is the differences in semi-major axes of all the asteroid from initial
to final states along with lines marking the prominent Kirkwood gaps in the Solar System

proxiamately for 1,20,000 yrs, the following result is obtained: Here, we cansee some asteroids that have deviated from the positions of other Kirkwood gaps.
Limitations:(1) We are assuming Jupiter to be in a circular orbit around the Sun.(2) We are neglecting the forces due to other planets.(3) A better numerical integration technique can be used.(4) A better initial set of asteroids can be prepared to give a better final result.

2.5. Kirkwood Gaps 22

(a) Position of asteroids, the Sun and Jupiter (b) Histogram of semi-major axes of asteroids

Figure 2.14: Asteroids after 1,20,000 years of simulation using the 2nd initialization
method

Figure 2.15: Differences between semi-major axes of all the asteroid from initial to final
states along with lines marking the prominent Kirkwood gaps in the Solar System

3. References
1. https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
2. https://en.wikipedia.org/wiki/Celestial_mechanics
3. https://jan.ucc.nau.edu/~ns46/student/2010/Frnka_2010.pdf
4. https://en.wikipedia.org/wiki/Analemma
5. https://en.wikipedia.org/wiki/Euler_method
6. https://www.physics.udel.edu/~bnikolic/teaching/phys660/numerical_ode/

node4.html

7. https://www.diva-portal.org/smash/get/diva2:566736/FULLTEXT01.pdf
8. https://en.wikipedia.org/wiki/Kirkwood_gap

23

https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
https://en.wikipedia.org/wiki/Celestial_mechanics
https://jan.ucc.nau.edu/~ns46/student/2010/Frnka_2010.pdf
https://en.wikipedia.org/wiki/Analemma
https://en.wikipedia.org/wiki/Euler_method
https://www.physics.udel.edu/~bnikolic/teaching/phys660/numerical_ode/node4.html
https://www.physics.udel.edu/~bnikolic/teaching/phys660/numerical_ode/node4.html
https://www.diva-portal.org/smash/get/diva2:566736/FULLTEXT01.pdf
https://en.wikipedia.org/wiki/Kirkwood_gap

	Abstract
	Theory
	Introduction
	N-Body Motion
	Circular Restricted three-body problem
	Analemma
	Gravity near massive bodies
	Kirkwood Gaps
	Numerical integration methods

	Results and Code
	Two body simulations
	N-body simulations
	Analemma
	Photons near black-holes
	Kirkwood Gaps

	References

