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. System Involving 2 Bodies

11 Two Body Problem

The two-body problem is a fundamental problem in classical mechanics and
celestial mechanics. It deals with the motion of two-point masses (or bodies)
that interact solely through gravitational forces. The problem can be simplified
by considering the masses of the bodies to be concentrated at their centers,
which allows us to treat them as point masses.

In the two-body problem, the two masses are subject to the gravitational
attraction between them. This means that each mass exerts a force on the
other, causing them to move in specific paths. The challenge is to determine
the positions and velocities of the bodies at any given time, given their initial
positions and velocities and the law of gravitation.

The two-body problem was first solved by Johannes Kepler, who formulated
three laws of planetary motion based on the observations of Tycho Brahe. Kepler’s
laws describe the motion of planets around the Sun and provide fundamental
insights into orbital mechanics:

Kepler’s First Law (Law of Orbits): Each planet moves in an elliptical orbit,
with the Sun at one of the two foci.

Kepler's Second Law (Law of Areas): A line segment joining a planet and the
Sun sweeps out equal areas during equal intervals of time. This implies that a
planet moves faster when closer to the Sun (perihelion) and slower when farther
away (aphelion).

Kepler's Third Law (Law of Harmonies): The square of the orbital period of a
planet is directly proportional to the cube of the semi-major axis of its orbit.

For more complex cases, where the masses of the two bodies are comparable
or if other forces are involved (e.g., perturbations from other celestial bodies),
the problem becomes more challenging and requires more sophisticated mathe-
matical and numerical methods for solutions.
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The two-body problem is not only relevant to celestial mechanics but also
finds applications in various areas, such as satellite motion, space missions, and
interplanetary travel, where the gravitational interaction between two masses
plays a crucial role in determining their trajectories.

Plots

Elliptical Orbit

An elliptical orbit is a type of closed orbit followed by a celestial object (e.g., a
planet or satellite) around a central body (e.g., a star). In an elliptical orbit, the
path traced by the object is an ellipse, which is a shape similar to a flattened
circle. The central body, such as a star, is located at one of the two foci of the
ellipse. The other focus remains empty.

In an elliptical orbit, the distance between the celestial object and the cen-
tral body varies as the object moves along its path. At one point, known as
the perihelion (for objects orbiting the Sun), the object is closest to the central
body. At another point, known as the aphelion, it is farthest from the central body.

Elliptical orbits follow Kepler's laws of planetary motion, which state that
planets move in elliptical orbits with the Sun at one of the foci.
Starting with the normal Euler integration method, | wrote the whole code for
plotting the orbit in ‘Class’ as suggested by mentors, so that | will be able to use
that further when it will be required.

Hyperbolic Orbit

A hyperbolic orbit is an open orbit followed by a celestial object when it moves
under the influence of a gravitational field, but its speed exceeds the escape
velocity of the central body. In a hyperbolic orbit, the path traced by the object
is a hyperbola, which is a curve that extends infinitely away from the central body.

Unlike elliptical orbits, which are closed and bound, hyperbolic orbits are
unbound and open. The object never returns to the central body, and its path
does not form a closed loop. Instead, it continues moving away from the central
body, reaching greater distances.

Hyperbolic orbits are often associated with comets or other celestial objects
that come from distant regions of the solar system or beyond. When they ap-
proach a star, they can be accelerated to speeds exceeding the escape velocity,
resulting in a hyperbolic trajectory.

In summary, elliptical orbits are closed and bound, forming elliptical paths
around a central body, while hyperbolic orbits are open and unbound, following
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hyperbolic paths away from a central body. Both types of orbits play crucial roles
in celestial mechanics and space exploration.

Using the same code as for the elliptical orbit, | just changed the parameter
values for the two particle.

The format of code that | used for plotting the trajectory(both for Elliptical and
Hyperbolic orbit) has been given below:

Particle:
__init__(self, mass,

update (self ,time_step ,f_x,f_y):

GravitationalSimulation:
__init__(self, particlel, particle2):

calculate_force(self):

simulate (self, time_step, num_steps):
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The plots that i got was the ones given below,

1e6 Elliptical orbit

0.0 0.2 0.4 0.6 0.8 1.0
x(m) le7

(a) Elliptical Orbit

1e7 Hyperbolic orbit
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(b) Hyperbolic orbit
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2.2

2 . Three Body System

Introduction

The three-body problem is a classical mechanics problem in physics that deals
with the motion of three objects (usually celestial bodies) under the influence
of their mutual gravitational attraction, without any other external forces. The
problem is to find the positions and velocities of the three bodies at any given
time, considering their initial positions and velocities.

The three-body problem is notoriously difficult to solve analytically, and in
most cases, there is no general closed-form solution. This is because the gravi-
tational interactions between the bodies result in complex and chaotic behaviors.
While solutions can be found in special cases, such as when one body is much
less massive than the other two (reducing it to a two-body problem), finding
precise solutions for arbitrary three-body systems is a major challenge.

Lagrange Points

Lagrange points are special points in a three-body system where the gravitational
forces of two large bodies and the centrifugal force of a smaller body combine to
create an equilibrium point. At these points, the gravitational attraction of the two
large bodies exactly balances the centrifugal force of the smaller body, allowing
it to remain in a stable relative position.

There are five Lagrange points in a three-body system, denoted as L1 to L5.
The first three, L1, L2, and L3, form a line connecting the two large bodies, with
L1 and L2 being located on opposite sides of the smaller body. L3 lies directly
opposite the smaller body on the line connecting the two larger bodies.

L4 and L5, known as the Trojan points, are located 60 degrees ahead of and
behind the smaller body in its orbit, forming equilateral triangles with the two
larger bodies. These points are often stable and have been observed in celestial
systems, like the Jupiter-Trojan asteroids.
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Lagrange points have significant practical importance in space missions, as
they offer relatively stable positions for spacecraft and satellites. For example,
some space observatories are placed at Lagrange points to maintain a stable
position relative to the Earth and the Sun, allowing for continuous observations
of distant regions of space.

In summary, the three-body problem involves the motion of three bodies
under their mutual gravitational attraction, and Lagrange points are special points
in such systems where the gravitational forces create an equilibrium that can be
used in space mission planning.

Reduced 3 body

Simulating for the Reduced 3 body problem by plotting the Contour of Potential
energy that shows the Lagrange points.

| was not getting correct plot even after writing the code correctly.

Then after changing the parameter values and making masses more comparable,
| got a decent plot but not totally accurate..

For the code, i only had to add these functions in above code for trajectories of
2-Body system.

potential_energy(self x,y):

generate_contour_plot(self,x0,y0,x1,yl,n):
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Figure 2.1:
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107 Potential energy contour for reduced 3-body problem
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Contour plot of potential energy for the reduced 3 body



3 . N-body System

The N-body problem is a classical problem in physics and astronomy that deals
with predicting the motion of N celestial objects (typically planets, stars, or other
massive bodies) under the influence of gravitational forces. In simple terms, it
involves determining how a collection of N bodies will move over time due to
their mutual gravitational interactions.

The fundamental principle behind the N-body problem is Newton’s law of
universal gravitation, which states that every particle in the universe attracts
every other particle with a force that is directly proportional to the product of
their masses and inversely proportional to the square of the distance between
them.

Despite its apparent simplicity, solving the N-body problem analytically is
extremely challenging, especially as the number of bodies (N) increases. In the
case of just two bodies, as demonstrated by Isaac Newton, the problem can
be solved exactly. However, for three or more bodies, the problem becomes
highly complex, and there is no known general analytical solution for an arbitrary
number of bodies.

For this reason, numerical methods and computer simulations are commonly
used to approximate the behavior of N-body systems. Various techniques, such
as the N-body simulation algorithms (e.g., direct summation, Barnes-Hut algo-
rithm) and symplectic integrators, are employed to predict the positions and
velocities of the bodies at discrete time steps.

The N-body problem has significant implications in astrophysics, cosmology,
and space mission planning. It is used to study celestial phenomena, such as
planetary motion, star clusters, galaxy dynamics, and even the evolution of the
entire universe. Moreover, it plays a crucial role in designing spacecraft trajecto-
ries and understanding the stability and long-term behavior of planetary systems.

The N-body problem is a fundamental challenge in physics and astronomy,

involving the prediction of the motion of multiple celestial bodies under the influ-
ence of gravitational forces. While no general analytical solution exists, numerical

11
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methods and simulations are commonly employed to study and approximate the

behavior of N-body systems in various scientific applications.

Particle:

__init__(self, mass , x,y,vx,vy,label)i

update (particles , dt):

simulate(particles, dt, steps):

p5
p6
p7

particle 1
particle 2

particle 3

The plots that | got was:

lell 7 body simulation
157 -+ pl ’_\
p2
. p3
1.0 T . p4
. p5
p6
0.5 - 07
E
= 0.0 .
_0‘.5 -
-1.0 -
T T T T T T T T T
-20 -15 -10 -05 0.0 0.5 1.0 L5 2.0
x(m) lell

Figure 3.1: Example of a 7 Body system
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le7 3 body simulation
2 .
1 =
E 0
=
_1 =
particle 1
5 particle 2
particle 3
T T T T T T
-3 -2 -1 0 1 2
x(m) 1le7

Figure 3.2: Example of a 3 Body system
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Ar . Restricted 3 Body

Horshoe and tadpole orbits are two interesting types of orbits that occur in ce-
lestial mechanics, particularly in the context of the three-body problem, where
three celestial bodies (typically a planet, a moon, and a larger body like a star)
influence each other’s motion through gravitational interactions. Both types of
orbits involve the interaction of two smaller bodies around a larger central body.

Horseshoe Orbits

A horseshoe orbit is a type of three-body orbit in which a smaller celestial body,
such as a moon, oscillates back and forth around the Lagrange points L3 and
L4 of a larger body’s orbit. The Lagrange points are stable points of equilibrium
where the gravitational forces from the two larger bodies (planet and star) balance
out the centripetal force of the smaller body, allowing it to remain in a relatively
stable position. In a horseshoe orbit, the smaller body initially orbits the larger
body in the same direction, but gravitational perturbations from the other larger
body cause it to gradually slow down and move away from its original orbit. As a
result, the smaller body eventually reaches the Lagrange point L3 or L4. However,
due to conservation of angular momentum, it cannot simply stay at the Lagrange
point and continues to move along a path that appears to trace the shape of a
horseshoe relative to the larger body.

The smaller body then continues this oscillatory motion, crossing in front of
and behind the larger body, forming a "horseshoe" shape in the reference frame
of the larger body.

Tadpole Orbit

A tadpole orbit is another type of three-body orbit in which a smaller celestial
body orbits a larger body in a peculiar pattern, which can resemble the shape of
a tadpole. In a tadpole orbit, the smaller body orbits around one of the Lagrange

14
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4.2. Tadpole Orbit 15

points L4 or L5 of the larger body’s orbit.

At these Lagrange points, the gravitational forces from both the larger body
and the other smaller body create a stable equilibrium position, allowing the
smaller body to remain relatively stationary with respect to the larger body. How-
ever, the presence of the larger body’s gravitational field causes the smaller body
to slowly drift in a tadpole-like pattern around the Lagrange point, following an
elongated looping path.

Both horseshoe and tadpole orbits are fascinating examples of complex orbital
dynamics arising from gravitational interactions in the three-body problem. These

types of orbits are important in celestial mechanics and have been observed in
various astronomical systems involving multiple celestial bodies.

Particle:
__init__(self, mass, pos,vel):

update (self ,dt, f):

Grav_Simulation:
__init__(self ,n,mass, pos,v):

force(self i) :

final_update(self , dt):

simulating (self , dt,num_steps):
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1e7 Horseshoe Orbit Simulation
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Figure 4.1: Horshoe Orbit
le7 Tadpole Orbit Simulation
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Figure 4.2: Tadpole Orbit



5 . Analemma

An analemma is a fascinating astronomical phenomenon that results from plot-
ting the position of the Sun in the sky at the same time of day throughout the
year. When observed at the same local solar time each day (e.g., noon), the Sun’s
apparent position traces out a figure-eight-shaped curve known as the analemma.

The analemma is primarily a result of the combination of two distinct motions
of the Earth: its axial tilt and its elliptical orbit around the Sun. The axial tilt
causes the Sun’s declination (angle above or below the celestial equator) to vary
throughout the year, while the elliptical orbit results in a varying speed of the
Earth along its orbital path.

The analemma is an essential tool for understanding and predicting the Sun’s
position in the sky at various times of the year, which is particularly important for
activities such as navigation, astronomy, and agriculture. It is often depicted on
sundials and globes to aid in timekeeping and celestial observations.

The shape of the analemma can vary depending on the observer’s latitude
on Earth. For observers at the equator, the analemma is a straight line, while at
higher latitudes, it takes on a more pronounced figure-eight shape.

The two lobes of the analemma correspond to the two solstices (summer and
winter) when the Sun reaches its highest and lowest points in the sky. The center
point of the figure-eight corresponds to the two equinoxes (spring and autumn)
when the Sun is directly above the equator.

The analemma is a beautiful visual representation of the Earth’s position rela-
tive to the Sun throughout the year, demonstrating the intricacies of our planet’s
orbital motion and axial tilt. It serves as a reminder of the cyclic and ever-changing
nature of our solar system and its impact on our daily lives.

Now solving for Elliptical Orbit(for ex. Sun-Earth system) by polar co-ordinates
equation for an ellipse:

17
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a1l - e?)
"~ 1+ecos6
Also by Kepler's second law:
1, ma*V1-é?
—r'w = —m—7 —————
2 T

and then using above equation of ellipse in polar co-ordinates , plus writing
w =28 We get,

/9 d6 _ 2nt

6 (1+6C0s6?)  T./(1_¢2)3

Solving for earth like planet, which traverses an orbit whose eccentricity is very
small, we can use binomial approximation. We get an equation;

c(@ —6p—2e(sinf@ —sinfy)) =t

where ¢ ~ 58.1 days and e = 0.0167 and also taking 8o = 75° as the angular
position of spring equinox and t as the measured time from spring equinox day
(21st March).

equation_to_solve (theta,t,theta_0,c,e):




19

Analemma

| —

/./"

J

20

N

a(degrees)
o

-10

-20 —
h""""--..._.__. -

Aldegrees)

Figure 5.1: Analemma
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. Shadow of Black Hole

The "shadow" of a black hole refers to a dark region in space directly surrounding
the black hole where light cannot escape. It is a critical feature associated with
the strong gravitational pull of a black hole.

When a black hole is situated in a region with a background of bright light
sources, such as stars or gas clouds, the extreme gravitational field of the black
hole causes the light from those background sources to be deflected and bent.
As a result, some of the light rays are bent inward toward the black hole, while
others are bent outward, creating a distorted and magnified image of the back-
ground light sources.

The region where light rays are bent inward and never escape is the "shadow"
of the black hole. This shadow appears as a dark, circular region against the
backdrop of bright light sources. The size and shape of the shadow depend on
the mass and spin of the black hole, as well as the observer’s vantage point.

The first direct observation of the shadow of a black hole was made possible
by the Event Horizon Telescope (EHT) project. In April 2019, the EHT collaboration
released the first-ever image of the shadow of the supermassive black hole at
the center of the galaxy M87. This groundbreaking observation provided strong
evidence for the existence of black holes and confirmed some predictions of
Einstein’s theory of general relativity.

20
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Traj:
__init__(self ,n,pos,v):

simulation(self  dt,n_steps):

The two plots that | got, first for the special case in’In[1]’ and other for different
photons in’In[2].

le12 Photon Trajectory

<--y co-ordinate-->
o
I

T T T T T T T
—6 —d -2 0 Z 4 (7]
=--X co-ordinate--= lel?2

Figure 6.1: A solution of photon trajectory
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le11 Photon Trajectory
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Figure 6.2: Photon trajectories for different values of impact parameter



7. Kirkwood Gaps

So there are some gaps in the asteroid belt of our Solar System. These gaps
are called the Kirkwood Gaps. These gaps are caused primarily by the interac-
tion of asteroids by Jupiter( as this is the most massive planet in the Solar System).

These interactions lead to orbital resonances of asteroid orbit with Jupiter’s
orbit. This happens when the period of the asteroid’s orbit and Jupiter’s orbit are
related in a simple fractional ratio.

These gravitational perturbations can accumulate over time, causing the
asteroids to experience changes in their orbits. Over millions of years, these
perturbations can become significant and, in some cases, can lead to the ejection
of asteroids from the resonance region. As a result, the regions corresponding to
the orbital resonances become sparsely populated, creating the Kirkwood gaps.

23
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The below figure gives a good feel of what is actually the Kirkwood gaps;

Figure 7.1: Kirkwood gaps. Main-belt asteroids are white. Inside the main belt, there are
the Atens (red), Apollos (green), and Amors (blue). Outside the main belt are the Hildas
(blue) and the Trojans (green). The Kirkwood gaps are visible in the main belt.
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