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1. System Involving 2 Bodies
1.1 Two Body ProblemThe two-body problem is a fundamental problem in classical mechanics andcelestial mechanics. It deals with the motion of two-point masses (or bodies)that interact solely through gravitational forces. The problem can be simplifiedby considering the masses of the bodies to be concentrated at their centers,which allows us to treat them as point masses.

In the two-body problem, the two masses are subject to the gravitationalattraction between them. This means that each mass exerts a force on theother, causing them to move in specific paths. The challenge is to determinethe positions and velocities of the bodies at any given time, given their initialpositions and velocities and the law of gravitation.
The two-body problem was first solved by Johannes Kepler, who formulatedthree laws of planetary motion based on the observations of Tycho Brahe. Kepler’slaws describe the motion of planets around the Sun and provide fundamentalinsights into orbital mechanics:
Kepler’s First Law (Law of Orbits): Each planet moves in an elliptical orbit,with the Sun at one of the two foci.
Kepler’s Second Law (Law of Areas): A line segment joining a planet and theSun sweeps out equal areas during equal intervals of time. This implies that aplanet moves faster when closer to the Sun (perihelion) and slower when fartheraway (aphelion).
Kepler’s Third Law (Law of Harmonies): The square of the orbital period of aplanet is directly proportional to the cube of the semi-major axis of its orbit.
For more complex cases, where the masses of the two bodies are comparableor if other forces are involved (e.g., perturbations from other celestial bodies),the problem becomes more challenging and requires more sophisticated mathe-matical and numerical methods for solutions.
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1.2. Plots 5
The two-body problem is not only relevant to celestial mechanics but alsofinds applications in various areas, such as satellite motion, space missions, andinterplanetary travel, where the gravitational interaction between two massesplays a crucial role in determining their trajectories.

1.2 Plots
1.2.1 Elliptical OrbitAn elliptical orbit is a type of closed orbit followed by a celestial object (e.g., aplanet or satellite) around a central body (e.g., a star). In an elliptical orbit, thepath traced by the object is an ellipse, which is a shape similar to a flattenedcircle. The central body, such as a star, is located at one of the two foci of theellipse. The other focus remains empty.

In an elliptical orbit, the distance between the celestial object and the cen-tral body varies as the object moves along its path. At one point, known asthe perihelion (for objects orbiting the Sun), the object is closest to the centralbody. At another point, known as the aphelion, it is farthest from the central body.
Elliptical orbits follow Kepler’s laws of planetary motion, which state thatplanets move in elliptical orbits with the Sun at one of the foci.Starting with the normal Euler integration method, I wrote the whole code forplotting the orbit in ’Class’ as suggested by mentors, so that I will be able to usethat further when it will be required.

1.2.2 Hyperbolic OrbitA hyperbolic orbit is an open orbit followed by a celestial object when it movesunder the influence of a gravitational field, but its speed exceeds the escapevelocity of the central body. In a hyperbolic orbit, the path traced by the objectis a hyperbola, which is a curve that extends infinitely away from the central body.
Unlike elliptical orbits, which are closed and bound, hyperbolic orbits areunbound and open. The object never returns to the central body, and its pathdoes not form a closed loop. Instead, it continues moving away from the centralbody, reaching greater distances.
Hyperbolic orbits are often associated with comets or other celestial objectsthat come from distant regions of the solar system or beyond. When they ap-proach a star, they can be accelerated to speeds exceeding the escape velocity,resulting in a hyperbolic trajectory.
In summary, elliptical orbits are closed and bound, forming elliptical pathsaround a central body, while hyperbolic orbits are open and unbound, following



1.2. Plots 6
hyperbolic paths away from a central body. Both types of orbits play crucial rolesin celestial mechanics and space exploration.
Using the same code as for the elliptical orbit, I just changed the parametervalues for the two particle.The format of code that I used for plotting the trajectory(both for Elliptical andHyperbolic orbit) has been given below:

1

2

3 class Particle :
4 def __init__ ( self , mass , x , y , vx , vy ) :
5 # For def in ing the mass , co−ordinates and ve loc i ty components for the ←↩pa r t i c l es .
6 def update ( self , time_step , f_x , f_y ) :
7 # For updating the vel and x , y−coordinates according to the accelerat ion , ←↩that comes from the type of force for which we want to p lot
8 class GravitationalSimulation :
9 def __init__ ( self , particle1 , particle2 ) :

10 # I n i t i a l i z i n g pa r t i c l e 1 and part ic le2 , so that I can use i t s parameters for ←↩fu r ther code
11 def calculate_force ( self ) :
12 # For stor ing the g rav i t a t i ona l forces that i calculated (component−wise ) in a←↩numpy array
13 def simulate ( self , time_step , num_steps ) :
14 # For s imulat ing / p lo t t i ng the t ra jec to ry ( scatter p lot ) by updating the ←↩pos i t ions according to the x and y forces calculated in above funct ion
15 # Parameter values that i used for E l l i p t i c a l Orbi t was
16 " new_part ic le_1 = Pa r t i c l e (2e30,0 ,0 ,0 ,1e6)
17 new_part icle_2 = Pa r t i c l e ( 1e30 , 1 e7,0 ,0 ,−2e6) "
18 # And the parameter values that i used for Hyperbolic Orbi t was
19 " pa r t i c l e _ 1=Pa r t i c l e (2e30,−2e7,−2e7 ,0 ,0)
20 par t i c le_2=Pa r t i c l e (6e18 ,0 .9e7 ,0 .8e7,−2e7,−2e7 ) "
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The plots that i got was the ones given below,

(a) Elliptical Orbit

(b) Hyperbolic orbit



2. Three Body System
2.1 IntroductionThe three-body problem is a classical mechanics problem in physics that dealswith the motion of three objects (usually celestial bodies) under the influenceof their mutual gravitational attraction, without any other external forces. Theproblem is to find the positions and velocities of the three bodies at any giventime, considering their initial positions and velocities.

The three-body problem is notoriously difficult to solve analytically, and inmost cases, there is no general closed-form solution. This is because the gravi-tational interactions between the bodies result in complex and chaotic behaviors.While solutions can be found in special cases, such as when one body is muchless massive than the other two (reducing it to a two-body problem), findingprecise solutions for arbitrary three-body systems is a major challenge.
2.2 Lagrange PointsLagrange points are special points in a three-body system where the gravitationalforces of two large bodies and the centrifugal force of a smaller body combine tocreate an equilibrium point. At these points, the gravitational attraction of the twolarge bodies exactly balances the centrifugal force of the smaller body, allowingit to remain in a stable relative position.

There are five Lagrange points in a three-body system, denoted as L1 to L5.The first three, L1, L2, and L3, form a line connecting the two large bodies, withL1 and L2 being located on opposite sides of the smaller body. L3 lies directlyopposite the smaller body on the line connecting the two larger bodies.
L4 and L5, known as the Trojan points, are located 60 degrees ahead of andbehind the smaller body in its orbit, forming equilateral triangles with the twolarger bodies. These points are often stable and have been observed in celestialsystems, like the Jupiter-Trojan asteroids.
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2.3. Reduced 3 body 9
Lagrange points have significant practical importance in space missions, asthey offer relatively stable positions for spacecraft and satellites. For example,some space observatories are placed at Lagrange points to maintain a stableposition relative to the Earth and the Sun, allowing for continuous observationsof distant regions of space.
In summary, the three-body problem involves the motion of three bodiesunder their mutual gravitational attraction, and Lagrange points are special pointsin such systems where the gravitational forces create an equilibrium that can beused in space mission planning.

2.3 Reduced 3 bodySimulating for the Reduced 3 body problem by plotting the Contour of Potentialenergy that shows the Lagrange points.I was not getting correct plot even after writing the code correctly.Then after changing the parameter values and making masses more comparable,I got a decent plot but not totally accurate..
For the code, i only had to add these functions in above code for trajectories of
2-Body system.

1 def potential_energy ( self , x , y ) :
2 # For ca lcu la t ing the potent ia l energy in a reduced 3 body problem
3

4 def generate_contour_plot ( self , x0 , y0 , x1 , y1 , n ) :
5

6 # I t w i l l generate the contour according to the number of x and y values
7

8 # Parameter values that i used for Contour p lo t t i ng was
9 " new_part ic le_1 = Pa r t i c l e (2e30,0 ,0 ,0 ,1e6)

10 new_part icle_2 = Pa r t i c l e ( 1e30 , 1 e7,0 ,0 ,−2e6) "
11

12 # I chose th i s as to make the masses comparable so that i need not had to zoom in←↩the f igure to my area of in te res t that i might have to do in the case of sun←↩
−earth where masses are not comparable



2.3. Reduced 3 body 10

Figure 2.1: Contour plot of potential energy for the reduced 3 body



3. N-body System
The N-body problem is a classical problem in physics and astronomy that dealswith predicting the motion of N celestial objects (typically planets, stars, or othermassive bodies) under the influence of gravitational forces. In simple terms, itinvolves determining how a collection of N bodies will move over time due totheir mutual gravitational interactions.
The fundamental principle behind the N-body problem is Newton’s law ofuniversal gravitation, which states that every particle in the universe attractsevery other particle with a force that is directly proportional to the product oftheir masses and inversely proportional to the square of the distance betweenthem.
Despite its apparent simplicity, solving the N-body problem analytically isextremely challenging, especially as the number of bodies (N) increases. In thecase of just two bodies, as demonstrated by Isaac Newton, the problem canbe solved exactly. However, for three or more bodies, the problem becomeshighly complex, and there is no known general analytical solution for an arbitrarynumber of bodies.
For this reason, numerical methods and computer simulations are commonlyused to approximate the behavior of N-body systems. Various techniques, suchas the N-body simulation algorithms (e.g., direct summation, Barnes-Hut algo-rithm) and symplectic integrators, are employed to predict the positions andvelocities of the bodies at discrete time steps.
The N-body problem has significant implications in astrophysics, cosmology,and space mission planning. It is used to study celestial phenomena, such asplanetary motion, star clusters, galaxy dynamics, and even the evolution of theentire universe. Moreover, it plays a crucial role in designing spacecraft trajecto-ries and understanding the stability and long-term behavior of planetary systems.
The N-body problem is a fundamental challenge in physics and astronomy,involving the prediction of the motion of multiple celestial bodies under the influ-ence of gravitational forces. While no general analytical solution exists, numerical
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12
methods and simulations are commonly employed to study and approximate thebehavior of N-body systems in various scientific applications.

1 class Particle :
2 def __init__ ( self , mass , x , y , vx , vy , label ) :
3 # For def in ing the mass , co−ordinates and ve loc i ty components for the ←↩pa r t i c l es .
4 def update ( particles , dt ) :
5 # I wrote two ' fo r ' loops , and calculated the g rav i t a t i ona l force for every ←↩pa r t i c l e due to the other pa r t i c l es and updating i t s pos i t ion and ve loc i t i e s ←↩according to the force .
6 def simulate ( particles , dt , steps ) :
7 # I maintained two l i s t in which i appended the ' x ' and 'y ' pos i t ions for every ←↩pa r t i c l e .
8 # Parameter i used was for a 7 body system , which was :
9 " pa r t i c l es =[ Pa r t i c l e (2e30,0 ,0 ,0 ,0 , "p1 " ) ,

10 Pa r t i c l e (5.97e24,1 .496 e11 ,0 ,0 ,2.978e4 , "p2 " ) ,
11 Pa r t i c l e (6e10 ,7.48e10 ,1.2956e11 ,−2.579e4,1 .489e4 , "p3 " ) ,
12 Pa r t i c l e (4e6,7.48e10,−1.2956e11 ,2.579e4,1 .489e4 , "p4 " ) ,
13 Pa r t i c l e (2e6 , 1 .481 e11 ,0 ,0 ,2.948e4 , "p5 " ) ,
14 Pa r t i c l e (2e6 , 1 . 5 1 1 e11 ,0 ,0 ,3.008e4 , "p6 " ) ,
15 Pa r t i c l e (2e6,−1.496e11 ,0 ,0 ,−2.978e4 , "p7 " ) ] ; fo r 400 steps and dt=10000"
16 # Second Parameter i fo r a 3 body system was :
17 " pa r t i c l es =[ Pa r t i c l e (2e30,0 ,0 ,0 ,−1.5e6 , " particle 1 " ) ,
18 Pa r t i c l e ( 1e30 , 1 . 5 e7 ,0 ,0 ,3e6 , " particle 2" ) ,
19 Pa r t i c l e (6e24 , 1 e7 ,0 ,0 ,0 .5e6 , " particle 3" )
20 ] ; fo r 3200 steps and dt =0.1 . "The plots that I got was:

Figure 3.1: Example of a 7 Body system
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Figure 3.2: Example of a 3 Body system



4. Restricted 3 Body
Horshoe and tadpole orbits are two interesting types of orbits that occur in ce-lestial mechanics, particularly in the context of the three-body problem, wherethree celestial bodies (typically a planet, a moon, and a larger body like a star)influence each other’s motion through gravitational interactions. Both types oforbits involve the interaction of two smaller bodies around a larger central body.

4.1 Horseshoe OrbitsA horseshoe orbit is a type of three-body orbit in which a smaller celestial body,such as a moon, oscillates back and forth around the Lagrange points L3 andL4 of a larger body’s orbit. The Lagrange points are stable points of equilibriumwhere the gravitational forces from the two larger bodies (planet and star) balanceout the centripetal force of the smaller body, allowing it to remain in a relativelystable position. In a horseshoe orbit, the smaller body initially orbits the largerbody in the same direction, but gravitational perturbations from the other largerbody cause it to gradually slow down and move away from its original orbit. As aresult, the smaller body eventually reaches the Lagrange point L3 or L4. However,due to conservation of angular momentum, it cannot simply stay at the Lagrangepoint and continues to move along a path that appears to trace the shape of ahorseshoe relative to the larger body.
The smaller body then continues this oscillatory motion, crossing in front ofand behind the larger body, forming a "horseshoe" shape in the reference frameof the larger body.

4.2 Tadpole OrbitA tadpole orbit is another type of three-body orbit in which a smaller celestialbody orbits a larger body in a peculiar pattern, which can resemble the shape ofa tadpole. In a tadpole orbit, the smaller body orbits around one of the Lagrange
14



4.2. Tadpole Orbit 15
points L4 or L5 of the larger body’s orbit.
At these Lagrange points, the gravitational forces from both the larger bodyand the other smaller body create a stable equilibrium position, allowing thesmaller body to remain relatively stationary with respect to the larger body. How-ever, the presence of the larger body’s gravitational field causes the smaller bodyto slowly drift in a tadpole-like pattern around the Lagrange point, following anelongated looping path.
Both horseshoe and tadpole orbits are fascinating examples of complex orbitaldynamics arising from gravitational interactions in the three-body problem. Thesetypes of orbits are important in celestial mechanics and have been observed invarious astronomical systems involving multiple celestial bodies.

1 class Particle :
2 def __init__ ( self , mass , pos , vel ) :
3 # For def in ing the mass , co−ordinates and ve loc i ty components for the ←↩pa r t i c l es in a l i s t .
4 def update ( self , dt , f ) :
5 # The ve loc i ty and pos i t ion w i l l get updated according to the force and for ←↩every timestep
6 class Grav_Simulation :
7 def __init__ ( self , n , mass , pos , v ) :
8 # Here 'n ' i s the no . of pa r t i c l es for which we are s imulat ing . So bas ica l l y ←↩I 'm also wr i t ing the code for N−body system but in ' class ' format now
9 def force ( self , i ) :

10 # Here we are maintaining a 2d numpy array which stores force in both x and y←↩di rect ions for every pa r t i c l e
11 def final_update ( self , dt ) :
12 # This i s the f i n a l update funct ion which takes only one aregument and we ←↩w i l l take the force for the above update funct ion from the force funct ion←↩that we defined
13 def simulating ( self , dt , num_steps ) :
14 # Here we are s imulat ing for ' dt ' timestep and no . of steps as num_steps . But←↩the issue here i s we are s imulat ing horshoe and tadpole orb i ts , which ←↩involve the s imulat ion in frame of C.O.M of the other 2 massive bodies . ←↩So for that we are maintaining an array which stores the x and y ←↩coordinates in COM frame
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Figure 4.1: Horshoe Orbit

Figure 4.2: Tadpole Orbit



5. Analemma
An analemma is a fascinating astronomical phenomenon that results from plot-ting the position of the Sun in the sky at the same time of day throughout theyear. When observed at the same local solar time each day (e.g., noon), the Sun’sapparent position traces out a figure-eight-shaped curve known as the analemma.
The analemma is primarily a result of the combination of two distinct motionsof the Earth: its axial tilt and its elliptical orbit around the Sun. The axial tiltcauses the Sun’s declination (angle above or below the celestial equator) to varythroughout the year, while the elliptical orbit results in a varying speed of theEarth along its orbital path.
The analemma is an essential tool for understanding and predicting the Sun’sposition in the sky at various times of the year, which is particularly important foractivities such as navigation, astronomy, and agriculture. It is often depicted onsundials and globes to aid in timekeeping and celestial observations.
The shape of the analemma can vary depending on the observer’s latitudeon Earth. For observers at the equator, the analemma is a straight line, while athigher latitudes, it takes on a more pronounced figure-eight shape.
The two lobes of the analemma correspond to the two solstices (summer andwinter) when the Sun reaches its highest and lowest points in the sky. The centerpoint of the figure-eight corresponds to the two equinoxes (spring and autumn)when the Sun is directly above the equator.
The analemma is a beautiful visual representation of the Earth’s position rela-tive to the Sun throughout the year, demonstrating the intricacies of our planet’sorbital motion and axial tilt. It serves as a reminder of the cyclic and ever-changingnature of our solar system and its impact on our daily lives.
Now solving for Elliptical Orbit(for ex. Sun-Earth system) by polar co-ordinatesequation for an ellipse:
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r =

a (1 − e2)
1 + e cos θAlso by Kepler’s second law:

1

2
r 2ω =

πa2
√
1 − e2
Tand then using above equation of ellipse in polar co-ordinates , plus writing

ω = dθ
d t . We get, ∫ θ

θ0

dθ

(1 + e cos θ2)
=

2πt

T
√
(1 − e2)3Solving for earth like planet, which traverses an orbit whose eccentricity is verysmall, we can use binomial approximation. We get an equation;

c (θ − θ0 − 2e (sin θ − sin θ0)) = twhere c ≈ 58.1 days and e = 0.0167 and also taking θ0 = 75◦ as the angularposition of spring equinox and t as the measured time from spring equinox day(21st March).
1 def equation_to_solve ( theta , t , theta_0 , c , e ) :
2 # Wrote a funct ion which w i l l return the above equation
3

4 # Then i maintained an array which w i l l store the so lut ions of above equation for ←↩d i f fe ren t values of t . I used an in−bu i l t funct ion " fsolve " in scipy . optimize
5

6 # As we know that shape of Analemma i s independent of la t i tude , so i took my observer←↩at North pole to get values of azimuth and a l t i t ude for each day .
7

8 # Now as we know the ec l i p t i c la t i tude , and by solv ing for the co−ordinates by ←↩spher ica l tr igonometry . We can get now the desired A l t and Az .
9

10 # P lo t t i ng A l t vs Az , we get the analemma
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Figure 5.1: Analemma



6. Shadow of Black Hole
The "shadow" of a black hole refers to a dark region in space directly surroundingthe black hole where light cannot escape. It is a critical feature associated withthe strong gravitational pull of a black hole.
When a black hole is situated in a region with a background of bright lightsources, such as stars or gas clouds, the extreme gravitational field of the blackhole causes the light from those background sources to be deflected and bent.As a result, some of the light rays are bent inward toward the black hole, whileothers are bent outward, creating a distorted and magnified image of the back-ground light sources.
The region where light rays are bent inward and never escape is the "shadow"of the black hole. This shadow appears as a dark, circular region against thebackdrop of bright light sources. The size and shape of the shadow depend onthe mass and spin of the black hole, as well as the observer’s vantage point.
The first direct observation of the shadow of a black hole was made possibleby the Event Horizon Telescope (EHT) project. In April 2019, the EHT collaborationreleased the first-ever image of the shadow of the supermassive black hole atthe center of the galaxy M87. This groundbreaking observation provided strongevidence for the existence of black holes and confirmed some predictions ofEinstein’s theory of general relativity.

1 In [ 1 ] : def def_eq (r , th ) :
2 # This returns a d i f f e r e n t i a l equation that we got by solv ing the equation ←↩fo r energy of photon .
3

4 # I solved the above d i f f e r e n t i a l equation using ' odeint ' , and got a pa r t i cu l a r ←↩so lut ion or t ra jec to ry for the photon
5

6

7 In [2 ] : c lass Photon :
8 def ___init__ ( self , pos , v ) :
9 # I t w i l l define the ve loc i ty and pos i t ion in a l i s t fo r the photon

10

11 def update :
12 # I t w i l l update the pos and vel of photons for given accelerat ion . And ←↩
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t h i s accelerat ion , we know by d i f f e r en t i a t i ng the potent ia l ( not the ←↩effect ive , but other than due to cent r i fuga l force )

13 class Traj :
14 def __init__ ( self , n , pos , v ) :
15 # Here I am jus t declar ing the pos and vel of every photon and 'n ' i s the←↩no . of photon t r a j ec to r i e s we want to p lot
16

17 def simulation ( self , dt , n_steps ) :
18 # F i na l l y s imulat ing for ' n_steps ' no . of steps and with timestep ' dt ' .The two plots that I got, first for the special case in ’In[1]’ and other for differentphotons in ’In[2]’.

Figure 6.1: A solution of photon trajectory
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Figure 6.2: Photon trajectories for different values of impact parameter



7. Kirkwood Gaps
So there are some gaps in the asteroid belt of our Solar System. These gapsare called the Kirkwood Gaps. These gaps are caused primarily by the interac-tion of asteroids by Jupiter( as this is themost massive planet in the Solar System).
These interactions lead to orbital resonances of asteroid orbit with Jupiter’sorbit. This happens when the period of the asteroid’s orbit and Jupiter’s orbit arerelated in a simple fractional ratio.
These gravitational perturbations can accumulate over time, causing theasteroids to experience changes in their orbits. Over millions of years, theseperturbations can become significant and, in some cases, can lead to the ejectionof asteroids from the resonance region. As a result, the regions corresponding tothe orbital resonances become sparsely populated, creating the Kirkwood gaps.
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The below figure gives a good feel of what is actually the Kirkwood gaps;

Figure 7.1: Kirkwood gaps. Main-belt asteroids are white. Inside the main belt, there are
the Atens (red), Apollos (green), and Amors (blue). Outside the main belt are the Hildas
(blue) and the Trojans (green). The Kirkwood gaps are visible in the main belt.
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