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Abstract

Gamma-ray bursts (GRBs) are highly energetic cosmic events that provide valu-
able insights into astrophysical phenomena. Accurate detection and classification of
GRBs are crucial for understanding their origins and associated phenomena. In this
project, we focused on developing techniques for detrending GRB light curves and
evaluating their signal-to-noise ratios (SNR). The detrending methods, including
mean of moving averages, median of moving averages, and Savgol filter, effectively
removed background noise, enabling precise analysis of GRB signals. We employed
various SNR evaluation techniques, such as Gaussian noise fit, Poisson noise fit, and
SNR based on mean and variations in noise, to classify genuine GRBs from non-GRB
events. Our research included preprocessing the data obtained from the AstroSat
CZTTI instrument and applying detrending methods to eliminate background noise.
By evaluating the SNR, we improved the reliability of GRB detection and classifica-
tion. Future work involves testing the techniques on fainter GRBs and developing a
general framework for distinguishing different types of GRBs from non-GRB signals.






1 Introduction

Gamma-ray bursts (GRBs) are powerful and highly energetic cosmic events that
have been a subject of intense research due to their profound implications in astro-
physics. Accurate detection and classification of GRBs play a pivotal role in under-
standing their origins and associated astrophysical phenomena. In this mid-project
report, we present our research on determining the signal-to-noise ratio (SNR) as
a quantifiable metric for classifying GRBs using data obtained from the AstroSat
CZTI (Cadmium Zinc Telluride Imager) instrument.

The primary objective of this project is to develop an effective technique for
quantifying the SNR of GRB signals observed by the CZTI instrument. By ac-
curately estimating the SNR, we aim to distinguish genuine GRBs from spurious
signals, thereby improving the reliability of GRB detection and classification.

The AstroSat CZTI instrument, equipped with an array of Cadmium Zinc Tel-
luride detectors, provides an excellent opportunity for precise gamma-ray observa-
tions. Leveraging the CZTI data, we seek to explore the characteristics of GRB
signals and identify the optimal SNR thresholds for distinguishing real GRBs from
noise or other non-GRB events.

2 Background

Gamma-ray bursts (GRBs) are transient astrophysical events characterized by highly
energetic emissions across the electromagnetic spectrum. They originate from vari-
ous phenomena, such as the collapse of massive stars or the merger of compact ob-
jects like neutron stars or black holes. the detection and classification of GRBs pose
significant challenges due to Factors such as instrumental noise, cosmic-ray back-
grounds, and the presence of other astrophysical sources emitting similar high-energy
signals contribute to the difficulty in distinguishing genuine GRBs from spurious or
non-GRB events.

One of the fundamental metrics used in astrophysics to quantify the strength
of a signal relative to the background noise is the signal-to-noise ratio (SNR). By
establishing an accurate SNR threshold, it becomes possible to differentiate genuine
GRBs from noise or other non-GRB signals. Our initial approaches include Gaussian
noise fit SNR calculation, Poisson noise fit SNR calculation, and SNR determination
based on the mean and variations in the noise. The objective of our research is
to compare and rank the different techniques based on their performance in GRB
classification and aim to identify the best possible method for determining the SNR
and effectively discriminating between real GRBs and spurious signals.

3 Methodology

3.1 Data Collection

The data required for this project was obtained from the AstroSat CZTT instrument.
The CZTI data provides crucial information about the energy and arrival time of
detected gamma-ray photons. To access the data, we downloaded the necessary files
from the AstroSat Data Archive, which is available at AstroBrowse.

The data obtained from the AstroSat CZTI instrument forms the foundation for
our analysis and enables us to investigate the characteristics of GRB signals.


https://astrobrowse.issdc.gov.in/astro_archive/archive/Search.jsp

3.2 Pre-processing and Calibration

After obtaining the CZTI data from the AstroSat Data Archive, the downloaded
data underwent a series of preprocessing and calibration steps to ensure accurate
analysis. The following pipelines were employed to clean and prepare the data for
further analysis.

3.2.1 Cztgtigen

Generate GTI (Good Time Intervals) based on the current GTI, mkf (attitude)
data, and user input. This step helps to identify the time intervals during which the
instrument was functioning optimally and the data is reliable.

3.2.2 Cztdatasel

Select events based on the GTI obtained in the previous step. This process in-
volves extracting only the events that fall within the designated good time intervals,
discarding data from periods affected by instrumental artifacts or unreliable mea-
surements.

3.2.3 Cztpixclean

Identify and remove noisy pixels and detectors by analyzing the data. This step
helps in removing events that are affected by instrumental noise, cosmic-ray con-
tamination, or other anomalies associated with specific pixels or detectors.

3.2.4 Cztflagbadpix

Combine bad pixel lists from multiple sources, if required. This step involves incor-
porating information about known bad pixels from various sources to ensure accurate
identification and removal of problematic pixels during subsequent analysis.

3.2.5 Cztbindata

Generate light curves and spectra from the cleaned and calibrated data. This step
involves binning the data to obtain light curves or grouping events to create en-
ergy spectra, which can provide valuable insights into the temporal and spectral
properties of GRBs.

By following these preprocessing and calibration steps, we aimed to obtain clean
and reliable data, free from instrumental artifacts and background contamination,
ready for subsequent SNR calculation and GRB analysis.



14000 4

12000 4

10000 4

800D

BO0D

4000 4

2000

RATE (s71)

12000 4

10000 4

800D

6000

4000 A

2000

LIGHT CURVE WITHOUT PRE-PROCESSING
Q

Q1

i

1000 2000

3000

4000 5000 7000 8000 1000 2000 3000

+3.0737eB

£000

4000

s000

£000

7000 8000
+3.0737eB

14000 4

4~—:U~‘_.l_4..v

000 2000

Figure 1: GRB190928A: Light curve with the unprocessed data
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Figure 2: GRB190928A: Light curve with the processed data
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3.3 Detrending

Detrending is a data processing technique used to remove long-term trends and sys-
tematic variations from a time series or signal, revealing the underlying short-term
variations of interest. In the context of GRB light curves, detrending is crucial to
eliminate the effects of constant background noise and other unwanted components,
enabling a clearer analysis of the burst’s intrinsic variability.

There are several detrending methods that can be employed in the analysis of
GRB light curves. In your project, three detrending techniques were utilized: the
mean of moving averages, the median of moving averages, and the Savgol filter.

3.3.1 Mean of Moving Window

The mean of moving averages method involves calculating the moving average over a
specified window size and then taking the mean of these averages to obtain the trend
line. This trend line represents the long-term variations or systematic components
present in the GRB light curve. To remove this trend from the original light curve,
you subtracted the trend line from the light curve.

By subtracting the trend line, you effectively eliminated the long-term variations
associated with the constant background noise count and other systematic compo-
nents. This process helped to isolate the intrinsic variability of the GRB signal,
allowing for a more focused analysis and accurate estimation of the signal-to-noise
ratio (SNR)
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Figure 3: GRB190928A: De-Trending with mean of moving averages on all the four

quadrants of CZTI

3.3.2

Median of Moving Window

This is similar to the previous method, but instaed of taking the mean of the moving
window, we took the median of the moving window.



DETRENDING WITH MEDIAN FILTER
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Figure 4: GRB190928A: De-Trending with median of moving averages on all the

four quadrants of CZTI

3.3.3 Savgol Filter

The Savgol filter, also known as the Savitzky-Golay filter, is a commonly used signal
processing technique for noise reduction and trend removal. It applies a polynomial



fit to local segments of the light curve and produces a smoothed representation by
minimizing the least squares difference between the polynomial fit and the original

data points.

By applying the Savgol filter, both the constant background noise

count and any other systematic variations, such as the SA window, can be effectively
eliminated, revealing the burst’s intrinsic variability.
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Figure 5: GRB190928A: De-Trending with SAVGOL filter on all the four quadrants

of CZTI



Each detrending method has its advantages and considerations. The mean of moving
averages and the median of moving averages are relatively simple and straightfor-
ward approaches that provide good results in many cases. They are particularly
useful when the data contain consistent trends that need to be removed. On the
other hand, the Savgol filter offers more flexibility and adaptability, allowing for
the adjustment of window size and polynomial order to optimize the detrending
performance based on the specific characteristics of the light curve.

By applying these detrending methods to the GRB light curves in your project,
you were able to effectively remove the constant background noise count and the
SA window, resulting in detrended light curves that emphasized the burst’s genuine
variability. These detrended light curves served as the basis for subsequent SNR
calculations and classification analyses, enabling a more accurate characterization
and classification of GRB signals.

3.4 Particle Events

A particle event refers to the detection of high-energy particles, such as cosmic rays
or energetic charged particles, in a detector or observational instrument. These par-
ticles can originate from various sources, including the Sun, other stars, supernovae,
or even distant astrophysical objects. When these high-energy particles interact with
the Earth’s atmosphere or the detector material, they produce secondary particles,
and the resulting shower of particles can be detected and recorded.

In light curve analysis, a particle event would typically result in a sudden in-
crease in the detected particle flux, followed by a gradual decrease as the shower
of secondary particles subsides. The light curve of a particle event might appear
as a sharp peak or spike in the data, depending on the energy and intensity of the
detected particles.

Particle events can resemble GRB (Gamma-Ray Burst) signals in a light curve
due to their sudden increase in count rate and energy deposition patterns, resem-
bling the initial intense phase of a GRB. The issue can lead to false astrophysical
interpretations and misrepresentation of the true phenomena in the universe. Ac-
curate identification of GRBs is crucial for understanding high-energy processes in
distant astrophysical sources, and the presence of particle events in the data can
significantly impact the reliability and validity of scientific findings.

3.4.1 Elimination of Particle Event

Particle events, caused by high-energy particles like cosmic rays, typically exhibit a
continuous and broad energy spectrum (5-100 KeV) without distinct spectral fea-
tures. They are usually of short duration, ranging from milliseconds to seconds, and
often show a sudden increase in count rate followed by a rapid decline. Properly
analyzing the energy distribution and duration in the light curve, along with con-
sidering the instrument’s response and background, are crucial in identifying and
distinguishing particle events from other astrophysical signals, ensuring accurate
interpretations and data analysis in high-energy astrophysics.
Steps taken to eliminate Particle Event

1. Splitting the Energy bands - The total energy of the GRB is 5-261 KeV.
Particle events are mostly present in 5-100 Kev, therefore we split the light
curve into three energy bands.



e 5-50 KeV
e 50-100 KeV
e 100-200 KeV

SNR analysis is done on each energy range separately and the weightage for
the three energy band is assigned appropriately

2. Checking all the Quadrants - If GRB signal is detected it would reflect on all
the four Quadrants (if not four, at least three). But for particle event, the
sudden burst will present only in one or two of the quadrants.

With help of these two techniques it is possible to eliminate the false detection
of particle event as an GRB signal and ensuring accurate interpretations and data
analysis in SNR calculation.

3.5 SNR Calculation Techniques

To determine the signal-to-noise ratio (SNR) of GRB signals, we explored multiple
calculation techniques. These techniques included

3.5.1 Gaussian Noise Fit SNR Calculation

This method involves fitting a Gaussian distribution to the background noise to
obtain the mean background noise. To calculate the SNR of the GRB, the maximum
value of the count in the GRB window is divided by the mean background noise
calculated.
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Figure 6: GRB190928A: Gaussian Fit for noise in Quadrant 0

3.5.2 Poisson Noise Fit SNR Calculation

This method involves fitting a Poisson distribution to the background noise to obtain
the mean background noise. For poisson fit, an offset must be added to detrended



data to get a proper fit. To calculate the SNR of the GRB, the maximum value of
the count in the GRB window is divided by the mean background noise calculated.
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Figure 7: GRB190928A: Poisson Fit for noise in Quadrant 0

3.5.3 SNR using Mean and Variations in Noise

This approach involves calculating the mean and variations in the background noise
and utilizing these statistical parameters to estimate the SNR.

The SNR calculated using the Mean and variance after detrending the data
appears to be the best method to calculate the SNR, after analyzing the different
parameters such as RMSE, Kurtosis, Skewness, Variance.

4 Software Tools and Platforms

We conducted our research using data obtained from the AstroSat CZTT instrument.
The data cleaning and preprocessing steps were performed using various software
tools and platforms, including the following components.

1. Operating System: The data cleaning pipelines were executed on the Ubuntu
operating system, providing a reliable and stable environment for running the
required software tools.

2. Data Cleaning Pipelines: The data cleaning pipelines, including cztgtigen, czt-
datasel, cztpixclean, cztevtclean, and cztflaghbadpix, were executed within the
Ubuntu environment. These pipelines were specifically designed for cleaning,
filtering, and removing instrumental artifacts from the CZTI data.

3. Jupyter Notebook: Python codes for implementing different SNR techniques
were programmed using Jupyter Notebook. Jupyter Notebook provided an
interactive and versatile platform for developing and executing the code. The
notebook format allowed for easy documentation and visualization of the anal-
ysis process

10



4. Python Libraries: Several Python libraries were utilized within the Jupyter
Notebook environment. These libraries included

e NumPy: Used for numerical computations and array operations.

Pandas: Utilized for data manipulation and analysis.

Matplotlib: Employed for data visualization and generating plots.

Scipy: Used for scientific computing and statistical analysis.

Astropy: Employed for astronomical data analysis and manipulation.

Random: Utilized for generating random numbers and implementing ran-
domization techniques

5 Results

We present the results obtained from the analysis of the three faint GRBs- GRB210519A,
GRB210709A, GRB210516A data. The data underwent preprocessing using the
CZTT pipeline to ensure accurate and reliable analysis. After preprocessing, de-
trending techniques were applied to remove the background noise and systematic
components from the GRB light curve. Subsequently, signal-to-noise ratio (SNR)
calculation techniques were done to quantify the strength of the GRB signals.

The SNR values will be further analyzed and compared to determine the optimal
method for accurately quantifying the SNR and distinguishing real GRBs from noise
or non-GRB events. These findings will contribute to the development of an effective
classification algorithm for GRBs based on their SNR characteristics.

Table 1: GRB210519A SNR values.

band 20-50
at GRB | at Particle event | at Random Position
QO -0.789 0.274 0.819
Q1 6.402 -2.44 5.535
Q2 -0.898 -3.793 0.041
Q3 11.212 -0.486 -5.587
Combined | 2.448 -3.257 3.383
band 50-100
at GRB | at Particle event | at Random Position
QO 10.741 0.834 0.015
Q1 14.982 -2.541 2.416
Q2 10.05 -7.978 -4.136
Q3 1.941 1.188 -14.057
Combined | 19.468 -5.12 -0.839
band 100-200
at GRB | at Particle event | at Random Position
Q0 9.434 -6.479 9.239
Q1 16.814 -5.174 -1.782
Q2 7.341 -0.335 -5.721
Q3 1.147 1.35 -9.851
Combined | 18.594 -6.59 0.745
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Table 2: GRB210709A SNR Values
band 20-50
at GRB | at Particle event | at Random Position
QO 0.3 3.39 8.625
Q1 10.505 4.601 -1.352
Q2 1.942 5.131 -2.051
Q3 3.099 -1.123 2.315
Combined | 6.783 7.324 3.237
band 50-100
at GRB | at Particle event | at Random Position
QO 12.347 -0.029 7.51
Q1 8.138 1.465 -8.045
Q2 13.532 -0.692 -3.666
Q3 4.971 3.516 4.741
Combined | 19.14 0.53 -2.924
band 100-200
at GRB | at Particle event | at Random Position
QO 18.668 1.702 0.931
Q1 10.7 6.134 6.146
Q2 2.448 4.454 -3.245
Q3 1.838 -4.397 4.71
Combined | 17.431 7.019 2.723

12




Table 3: GRB210516A SNR Values

band 20-50
at GRB | at Particle event | at Random Position
QO 0.56 -5.979 5.107
Q1 1.821 4.569 -1.946
Q2 4.326 -3.83 -1.017
Q3 5.963 2.198 3.579
Combined | 6.122 -2.158 3.034
band 50-100
at GRB | at Particle event | at Random Position
QO 4.37 0.834 0.015
Q1 9.387 -2.541 2.416
Q2 4.371 -7.978 -4.136
Q3 0.026 1.188 -14.057
Combined 9.04 -7.117 0.306
band 100-200
at GRB | at Particle event | at Random Position
QO 10.715 -2.45 -0.345
Q1 6.167 -0.081 2.131
Q2 1.868 5.493 -2.743
Q3 6.696 -0.504 3.891
Combined | 12.374 1.205 1.355

5.1 Observation

For these three GRBs the 20-50 band did not give proper SNR values. But the
other two bands had significantly large SNR values. The SNR value for particle
event and at random position for all the three bands where low even negative for
some quadrants (which i have marked in yellow). At GRB the SNR values were high
(more than 6), marked in green. For GRB210519A and GRB210709A the quadrant
3 was bad, hence I did not consider them for all quadrant combined SNR value.
While for GRB210516A, the Q3 was not that bad so I included it for combined SNR

calculation

5.2 Inference

From these three GRB SNR calculation for different bin sizes and different energy
band, if the SNR values are more than 6 in at least two quadrants and two energy
bands(in my case it was 50-100 and 100-200) we can say that it is GRB signal. If
there is a negative SNR value in two quadrants and two energy bands, we can say
that it is a particle event or some bogus signal and not an GRB signal. For example,
in a particle event the SNR value will be really high in one particular quadrant where
particle event occurred but the other unaffected quadrants will have a negative SNR
from which we can say that it is a particle event and not a GRB signal.
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