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Abstract

We replicated the earlier models for the purpose of explaining a variety of
stellar flares. We also provided our own amendments and potential issues with the
existing models. We assumed that a flare consists of two components, the first of
which rises in brightness quickly and relatively strongly, the second of which is slower
and fainter. The latter is the consequence of the star’s photosphere reflecting
some of the energy from the first flare. The flare’s location in relation to the stellar
visible disc determines the flare’s morphology, and the model is mostly based on
geometrical considerations.
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1. Introduction

1.1 Background

Flare activity often occurs or is constantly present in the early stages of stellar
evolution. However, star formation theories essentially ignore this fact. The flare
event could be crucial for comprehending star creation and early development.
Mirzoyan [1981]; Parsamian and Chavira [1969] Understanding the mechanism(s)
of flare is complicated by the broad range of light curve morphologies. Specifying
and predicting these light curves can help us learn important details about the
solar processes that influence planetary ionospheres and thermospheres.

According to an examination of the light curves of flares recorded with a high
time resolution, the vast array of distinct manifestations of these profiles may be
divided into the following types. First type of profile includes a single flare where
the brightness increases quickly for a brief period of time before declining slowly.
Other type of profile consists of two or more distinct brightness peaks and are
called the composite flares or double/higher order flares. Very often the decline of
the first flare is followed by a second, fainter and much slower component, but in
some cases only a slow rise and slow decline of brightness is observed. Tovmassian
et al. [2003]

Elementary Flare Profile
We employed a straightforward mathematical formula (Equation eq1) that de-
scribes a so-called elementary soft X-ray flare time profile in order to understand
specific flare brightenings seen on the light curve (EFP) Gryciuk et al. [2017]. We
parametrized simple, single-peaked events and break down complicated, multi-
peaked flares into a sequence of basic events by fitting the profile to the data.
The observed light curve’s form was connected to the temporal profile of energy
release. It is expected that the energy emitted at a particular moment would
diminish quickly and monotonically according to a Gaussian distribution g(x). The
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dissipation of energy released is assumed to be a monotonically decreasing func-
tion h(x). The energy dissipates (via radiation and conduction processes), and at
time t (following x), the energy that is now accessible is g(x)h(t − x)dx. The integral
of d f from 0 to t represents the total energy f (t) accessible at time t.

f (t) =
∫

∞

0
g(x)h(t − x)dx (1.1)

where g(x) = Ae−(x−B)2/C2
, and h(x) = e(−Dx).

We would be using this convolution function for modelling our flares as de-
scribed as Method 1 in the subsection 3.

1.2 Observations and Datasets

The Solar X-ray Monitor (XSM), onboard Chandrayaan-2, is an instrument of the
India’s lunar mission launched on July 22, 2019. XSM continuously monitors the
Sun and measures the Solar spectrum in the energy ranges of 1− 15 keV with
an energy resolution of ∼ 175 eV at 5.9 keV. The spectral performance of the
in-flight observations were found to be identical to that of the ground based
observations. Mithun et al. [2020] Though the primary objective of the XSM was to
provide the solar spectrum for the X-ray fluorescence spectroscopy experiment on
the Chandrayaan-2 orbiter, which maps the elemental abundance of the lunar
surface, but the XSM data can be used to independently study the Sun. These can
be used to study Solar activity. It is designed in such a way that it carries out the
flux measurements with time cadence of 1 sec over a wide range of solar activity,
from below A-class to upto X-class X ray emission.

The raw level 1 data and the calibrated level 2 XSM data is organized day wise
and can be downloaded from PRADAN portal 1 of ISRO Science Data Archive
(ISDA) at the Indian Space Science Data Center (ISSDC), Bangalore. We made
use of the raw level 1 data, i.e. the .lc files for performing temporal analysis.

1.3 Aims and Objectives

The goal primarily comprises of detection, identification, and analysis of Solar Flares
in X-Ray Light curves observed by XSM. This will help us in developing a robust and
reliable pipeline for XSM temporal data. The XSM has more sensitivity than the
GOES, and its detections are publicly accessible. By developing a code which is
able to perform the aforementioned tasks, it was required to follow up those by
implementing it to the GOES and the XSM data. It is also required to test whether
the NOAA detection algorithm which is the current flare detection algorithm, used
by NASA, and other algorithms best or not.

Apart from all these previously known detection and identification methods and
algorithms of stellar flares, our task also consists of developing and implementing
our own algorithm without diverting from the main goal, i.e. making a robust and
efficient code. The analysis consists of fitting a good model to the detected flares.
Additionally, those few flares which are not identifiable by the code, but could be
identified visually, needs to be fitted using suitable models.

1https://pradan.issdc.gov.in/pradan/



2. Data Cleaning

We tried implementing various methods as described in Gryciuk et al. [2017]
and Aschwanden and Freeland [2012]. Picking a few good plots with sufficient
data points based on the noise in the data and manually identifying the peaks
and deciding if they are flares in order to get familiar with the identification and
detection process before automating the same. The following subsections include
the different methodologies (modified version of the articles mentioned above)
used by us to detect, identify and analyze the flares:

• The initial step involved the pre-processing of the raw data so as to convert
the continuous count rate values to categories using the method of binning.
Given our data was of one day in length i.e. 86400 s or 24 h. The binning was
kept around 50−200 s which produced decent results.

• To clear out the roughness, reduce the noise, and to help us see better trends
and patterns in the data, smoothing was done. This also helped in eliminating
the outliers in the data. We used Boxcar averaging for smoothing our data,
using Box1DKernel 1 available as Astropy python package Robitaille et al.
[2013]. Different days give different results based on the level of solar activity
on that day.

1https://docs.astropy.org/en/stable/api/astropy.convolution.Box1DKernel.html



3. Trigger Algorithm

After binning and smoothing, we tried detection, identification and analysis of the
lightcurves using various methods. Here in this report, we will show our implemented
method using 3 event files of XSM data i.e. data of 01 Oct 2019, 06 Apr 2020, and
07 Apr 2020.

• The algorithm for flare detection has been implemented almost directly from
Gryciuk et al. [2017]. First, we start by finding 4 consecutive increasing points
such that the slope joining first and last point is more than a certain threshold.
This threshold lies between 1.03 and 1.08. Then, we kept moving ahead and
find 3 consecutive decreasing points. This means that the local peak must
lie in between these points. We do this by finding the maxima between the
initial and final set of points to determine the peak. It is also advisable to do a
reverse pass after this. i.e to run the same algorithm in reverse and find other
peaks. This is shown in the figures 3.1, 3.2, and 3.3 below.
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Figure 3.1: Light Curve with raw detected flare peaks in red (01 Oct, 2019)

Figure 3.2: Light Curve with raw detected flare peaks in red (06 Apr, 2020)
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Figure 3.3: Light Curve with raw detected flare peaks in red (07 Apr, 2020)

• Once these raw peaks were detected, it was needed to be checked which
peaks are real and which ones false detections. This required the extraction
of background and then check which ones of those ‘detected’ flares lies
above the 3σ level of the background. Only those will be contribute to the
‘real’ flares.

• We started by guessing an initial start and end time. We remove the ‘de-
tected’ flares from the light curve (single day) based on the initial 4 increasing
3 decreasing points. This marked as our initial guessed start times (first point
of the increasing trend) and end times (last point of the decreasing trend)
respectively. We removed all the flares between the initial and final start times
connected the each flare. After removing all the flares, the rest of the data is
assumed to be contributing to the ‘initial guessed’ background.

• The intensities of definite flares on certain days were equal to those of noise
and even the background on more active days. This made it difficult to find
a straightforward algorithm for flare detection using a background, which
made us implement different background models.

3.0.1 Constant Background fits

• We fitted a constant line to the full day data after removal of the initial
detected flares. Those flare peaks whose count rates were 3σ times higher
than the background level were eliminated, and the rest of the data was
assumed to be contributing most to the background.

• We repeated this process till the background level i.e. const + 3σ level con-
verges. Then taking this as the background level, the ‘start times’ and the
‘end times’ of the flares were assumed to be starting above or at this level. A
condition was put forth that the end times of a flare must occur before or at
the start time of the next detected flare.
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Figure 3.4: Light Curve with cleaned detected flares with end times in black, start
times in magenta, and a constant background level in green colour (01 Oct, 2019)

Figure 3.5: Light Curve with cleaned detected flares with end times in black, start
times in magenta, and a constant background level in green colour (06 Apr, 2020)
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Figure 3.6: Light Curve with cleaned detected flares with end times in black, start
times in magenta, and a constant background level in green colour (07 Apr, 2020)

• After this we get the start times, end times, and the peak of the flare. Using
these parameters, we tried to fit a convolution function i.e. A gaussian with
and an exponential decay to our flares.

Figure 3.7: Light Curve with fitted flares (red curve) with start times in magenta, end
times in black, and a constant background level in green colour (01 Oct, 2019)
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Figure 3.8: Light Curve with fitted flares (red curve) with start times in magenta, end
times in black, and a constant background level in green colour (06 Apr, 2020)

Figure 3.9: Light Curve with fitted flares (red curve) with start times in magenta, end
times in black, and a constant background level in green colour (07 Apr, 2020)

3.0.2 Linear and Polynomial Background fits

• We fitted a straight line to the noise and remove outliers. i.e anything that
goes more that 2.5−3σ away from the line. This is done, because in the case
of multiple flares, some residual flare data remains from the minima between
peaks.

• For the remaining data, we fitted a polynomial to it, or a set of 3−4 straight
lines. We used this fitted background for the background subtraction from
our data.
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Figure 3.10: Cleaned data (flares removed) with linear background fit in green
colour (01 Oct, 2019)

Figure 3.11: Cleaned data (flares removed) with linear background fit in green
colour (06 Apr, 2020)
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Figure 3.12: Cleaned data (flares removed) with linear background fit in green
colour (07 Apr, 2020)

• After background subtraction, we found the start and end times. Based on
the initial algorithm, we found the start times using increasing consecutive
points method. The end times are found by passing a line which has the slope
of the background at that point, through the point. When this line intersects
the light curve again, we marked the point as the end time. Flares which
were too short(< 20 mins) are rejected.

• For the remaining flares, curve fitting is done. This curve is the convolution of
a gaussian rise and an exponential decay. Gryciuk et al. [2017].

Figure 3.13: Scatter plot of background and multi-line fit



4. NOAA Algorithm

• The NOAA detection algorithm was followed in order to automatically detect
the start time, peak and end time of the flares. The NOAA detection algorithm
implemented by me proceeds in the following way:

– All such instances of data that contain 4 consecutive increasing points
with the last point being 1.4 times greater than the fourth were found
(Note: The value of the factor is flexible depending on the dataset.)

– For each such instance, we temporarily assigned it as the start time of
the flare and detect the nearest peak and assign it as a peak. Now find
and assign the end of the flare to be where it drops to half the value of
the peak [0.5 times (peak value + start value)].

– In the rising part of a particular flare we might end up finding multiple
instances of start times for a particular peak which will also result in
multiple end times. Hence, the earliest start time in such cases were
chosen and then assign the corresponding end time using the identified
peak.

– This algorithm might end up finding small peaks in data which may not
always represent the biggest peak between the start and end time as
it detects the first local maxima after 4 consecutive increases. Hence
while searching for an end time, if we find a higher peak before we
find the value at which the flare ends, we update the peak value and
continue to search for the end time of the flare with the new peak value
in consideration.

– Finally, for flares that don’t reach an ending within a given day, we assign
the end time as the last datapoint in the graph.

• Flares were removed (data points between the start and end time of the
flares) from the overall data and assign the remaining data points as the
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background radiation for the day.

• Mean and Standard Deviation of the background was calculated, and all
the data in the background which is more than ±1 std around the mean
were eliminated and the process was repeated until the std is down to a
certain threshold, the background at this point can be safely considered as
the true background.

• Various fit functions were explored like the one mentioned in the Flare Char-
acteristics from X-ray Light Curves paper: Convolution of a Normal distribution
function and an Exponential decay function and a convolution between a
normal distribution and an inverse power law function. Parameter tweaking
in the functions according to a given elementary flare in consideration. This is
done in order to identify whether the detected flare is indeed a valid flare
and what mathematical function best describes a solar flare.



5. Local Extrema Algorithm

This method is inspired by the section 2.2 of Aschwanden and Freeland [2012]
but the method described in this section has significant deviation from it in many
cases.

Firstly, we need to do binning with a certain bin size, and different bin sizes
were seen to be suitable for different datasets but mainly it will vary within 50s to
300s. For the example mentioned in this paper, I have used binsize=50s. We have
used mean for binning. It was followed by removal of data gaps by employing the
dropna() function from the pandas library.

Figure 5.1: Signal after Binning

Secondly, data smoothening is done with boxcar averaging method with a
window size, also dependable on the data set (mainly within 10 to 25). In this case,
I have used window size=15. Before this step, we can include a Noise Elimination
Step, where we will eliminate data points outside the mean± threshold limit, and
doing this iteration for at least 5-6 trials.

Then, we will find ’local’ minimas and maximas to a certain extent of locality,
i.e., within how many neighbouring points, the extrema is detected. I have set
order of locality to n=10 here.

For finding threshold, those maximas were removed where the slope of the



18 Chapter 5. Local Extrema Algorithm

Figure 5.2: After smoothening in Boxcar Average Method

increasing part is less than a certain threshold, which here is set to 0.2. This may
change in different cases. Next, we search for those maximas which are between
two minima points, as they may be potential flare peaks. This is just a heuristic way
to finding potential flares, so that we can exclude them to get the background
of the signal. After removing those parts between consecutive minimas, which
contain one or more maximas in between, we take median of the rest of the
signal (lets name the flareless data as noisy background) to get the background.
One can take mean also and see which one suits better. We assumed here
that background is a constant function through out the whole day, and have
drawn a straight line as background line, while we can also do linear fitting or any
other function, and they also may suit better than constant function, but constant
function has worked quite well in the given case.

Figure 5.3: Setting Background Constant with marked Peaks in Green points

We take the standard deviation (σ) of noisy background ( defined before).Then
we eliminate those peaks which are below the level of background ×σ . We
replace those minimas with background value we determined before, which are
below the background line.

We get a much nicer signal now, which have a very steady nice-looking
background, with peaks on it, smooth and nice. Where ever the shapes start rising
from the background, we mark the starting point, and where ever it reaches the
background, we mark the end point. (It is different from the idea used in the papers,
but the background detection algorithm we used here, gives a background a bit
higher than that one from the paper, so this makes sense). As background, we
have taken a window of length 1 here, which contains the background.

Another approach can be taken regarding detecting the background as
follows: The background flux is defined from the median flux in a time interval [ts-
tmin, ts]. However, the problem with this method is that the background is different
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Figure 5.4: A single flare

for every local minima, and it is not constant for the complete dataset, as shown
in Figure 5.5. We propose a way to make it constant. We first detected the
background fluxes for every local minima point and took the median of all these
fluxes to get the global background flux as shown in Figure 5.6.

Figure 5.5: Figure showing the local maxima with green spots, local minima with
red spots. The order chosen is 10. The grey-coloured dashed line shows the
background flux.

We then can look into a particular flare in the signal and can fit its is shape with
the function Elementary Flare Peak described in the paper of Gryciuk et al and
get the parameters needed to describe a flare event. We can see how efficient
our algorithm was from its shape similarity to the ideal flare of EFP itself.

Before the background determination method and all steps afterwards, we
can also apply Chebyshev fit on the obtained flares as below.
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Figure 5.6: Figure showing the local maxima with green spots, local minima with red
spots. The order chosen is 10. The grey-coloured dashed line shows the constant
background flux.

Figure 5.7: Ideal shape of Solar Flare according to EFP
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Figure 5.8: Method 5- Identified flares and Chebyshev polynomials fit



6. Results and Discussions

Throughout the analysis, optimizing bin sizes and flare duration proved to be a
challenge. Smoothing also caused loss of resolution in the data. It lead to the
detection of background noise as potential flares and skipping of possible flares,
which were marked by manually eyeballing the data.

The increment in the threshold value for the slope in the trigger algorithm caused
various peaks to be non-detectable. We have to find a better way to resolve and
fix a particular threshold. Inaccuracies in the peak detection algorithm cause
these flares to not be removed and trickle down into the background. This was the
reason we had to include the removal of data beyond 3σ from the background.
Moreover, the background at that point had ended up containing many flares.
Often, the background data from the algorithm did not span the whole day and
this lead to over-fitting. This made it difficult to optimize a single background fitting
technique for different days. Apart from this, this algorithm would often capture
multiple flares and call them a single flare. This led to bad fits that were difficult to
resolve.

The NOAA algorithm also missed detection of flares instances containing double
peaks as we only detect global maximums between the start and end times.
Hence, a formulated procedure to assign consecutive local minima as start and
end times in such cases which is to be implemented.

Also, the Local Extrema Algorithm identifies several sets of three points as po-
tential flares that can’t fit according to the elementary flare criterion. Furthermore,
to reduce the time complexity, the algorithm wasn’t repeated for identifying more
minor flares.

For the datasets in the year of 2019, we had very good data as we had solar
minima that time and it marked start of a new solar cycle. For later times, many of
the datasets could not be handled well with this algorithm(Chirag).

The algorithm(Gourav) is unable to detect low intensity flares



7. Conclusions and Future Works

Based on the count rates and the Flares detection algorithms used, we learnt that
the solar background fluctuates slowly over time and the solar minima occurred in
the year 2020. We found that not all flares have a gaussian rise and an exponential
decay. Even if the detection algorithm seems to be identifying them as flares,
the convolution function was not completely accurate. Few flares were better
fitted with gaussian only fits and few with just decaying exponential fits. We figured
out that Fast Rise and Exponential Decay (FRED) could be a potential fit to our
detected flares. We hope to implement this model in future which will also help
determine different Flare parameters.

The methods used are not yet robust against semi-empty or empty datasets
which occurred during eclipses or days where data was not collected by Chandrayan-
2. Assigning a threshold for the number of points in the data set for it to be under
consideration and making the bin size dynamic for a variable number of data
points are possible solutions. We intend to develop better techniques to differenti-
ate between flaring and background regions and to identify multi flares accurately.
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