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Abstract

Gravitational Waves are ripples in spacetime, which were first predicted by Albert
Einstein in 1916 using the General Theory of Relativity and observed experimen-
tally in 2015 by the Laser Interferometer Gravitational wave Observatory (LIGO).
The modeling of gravitational wave signals detected by LIGO requires solving
the Einstein Field Equations to theoretically generate the gravitational waveforms.
However, due to their highly non-linear and complicated nature we use certain
approximation methods. In this project, we employed the Quadrupole Approxi-
mation and Post Newtonian Expansions to generate gravitational waveforms of
Compact Binary Coalescence (CBC) for varying source parameters. A delay in the
coalescence time was observed for Post Newtonian (PN) Waveform as compared
to the Newtonian waveform because of the PN correction terms. The delay was
found to vary with the masses of the binary components and choice of initial
gravitational wave frequency. Matched Filtering of the GW150914 strain data was
done with the generated waveforms as templates. A higher Signal to Noise Ratio
(SNR) was obtained for the PN Waveform compared to the Newtonian waveform,
which suggests its effectiveness in finding gravitational wave signals.
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1. GR explanation of gravitational waves

1.1 Brief introduction to the General Relativity

General relativity stands as a well-tested description of Gravitation from more
than 100 years. General relativity generalises Special Relativity beyond vacuum
conditions i.e. in presence of heavy masses, radiation etc and describes Gravity
as a geometric property of space-time.
The fundamental quantity called metric gµν contains all the information about the
geometry of spacetime. The metric is a function of position in spacetime

gµν = gµν (xα) (1.1)

where xα = (x0,x1,x2,x3) = (ct,x,y,z) is a 4-dimensional spacetime coordinate.

In flat spacetime for a line element ds , ds2 =−(cdt)2 +dx2 +dy2 +dz2 = ηµνdxµdxν

where

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.2)

ηµν is called Minkowiski Metric and gµν = ηµν in flat spacetime.
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The metric is a tensor quantity and the components of the metric are determined
by Einstein’s field equations

Rµν −
1
2

Rgµν +Λgµν =
8πG
c4 Tµv (1.3)

where,

Tµν is Energy Momentum Tensor - the tensor describes flux and density of en-
ergy and momentum in spacetime,

Rµν is Ricci Tensor and R is Ricci scalar,

R = gµνRµν , Rµν = Rα
µαν where, Rβ

µαν is called Reimann Tensor - it is a geomet-
ric measure of curvature of spacetime,

Λ is the Einstein’s Cosmological constant, c and G being the speed of light and
Gravitational constant respectively.

Very few analytic solutions are known for such an equation. Some known analytic
solutions exists for Einstein’s Field Equations which are linearised (1.3.1) around flat
spacetime. The solutions in the Newtonian limit should match the dynamics of the
interacting bodies as predicted by Newton’s laws of Gravitation. This amounts to
the requirement that the gravitational field be weak, static (no time derivatives)
and the test particles be moving slowly. In a less restrictive situation in which field
can vary with time and with no restrictions on the motion of test particles new
phenomenon are observed. Gravitational radiation/waves being one among
them. It is observed when field is allowed to vary with time.

1.2 Gravitational waves from Newtonian Potential

The gravitational field potential in Newtonian Gravitational formulation is given by

∇
2
φ(x, t) = 4πGρ (1.4)

where, ρ is the mass density of the source of the field. The solution of this field is
given by

φN(x, t) =−G
∫

ρ(y, t)r−1d3y,r ≡ |x−y| (1.5)

φN denotes the Newtonian field potential. It can be observed that the above field
potential is instantaneous i.e. the change in the potential due to change in the
mass distribution is instantaneous. This violates Special Relativity, as no information
should be able to propagate faster than the speed of light c.
Thus we introduce a delay (retardation),so the change in ρ at y is felt at x after
time |x−y|

c . The new field potential φR is called the relativistic field potential.

φR(x, t) =−G
∫

ρ(y, t − r/c)r−1d3y,r ≡ |x−y| (1.6)
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It can be shown that φR satisfies scalar wave equation.

∇
2
φ − 1

c2
∂ 2φ

∂ t2 = 4πGρ (1.7)

The insertion of the retardation term leads to Gravitational Waves. The spatial
gradient of φR is given by

∇φR = G
∫ (

ρ

r
− 1

c
∂ρ

∂ t

)
x−y

r2 d3y (1.8)

If we consider ρ to be non zero only in a region of radius R around the origin. Then
far away from the source |x|>> R ⇒ r ≈ x, then the first term is negligible compared
to the second, hence

x̂ ·∇φR ≈−1
c

∂φR

c∂ t
(1.9)

Thus far away from the source at length scale λ , changes in φR (x̂ ·∇φR ∼ φR/λ ) is c
times typical time scale P on which φR changes.
So a change along x is compensated for by a change in a time larger by a factor of
c, which is characteristic of a wave travelling at speed c. Thus the spatial variance
of relativistic potential φR is more sensitive to ∂ρ/∂ t than the distance |x| in contrast
to Newtonian potential φN which depends only on |x|.
These wave like phenomenon are the Gravitational Waves.

1.3 Relativistic wave equation

1.3.1 Linearization of Metric
In an approach to the same problem using General Relativity i.e. when the field
is not restricted to static situations and is allowed to vary with time, Gravitational
waves are observed. For a weak gravitational field the metric can be decomposed
into a flat Minkowski Metric plus a small perturbation.

gµν = ηµν +hµν ,
∣∣hµν

∣∣<< 1 (1.10)

where, ηµν = diag(−1,+1,+1,+1)

Thus, a weak gravitational field differs only slightly from flat spacetime. The quan-
tities hµν are perturbations or deviations of the metric away from flat spacetime.
The assumption that hµν is small allows us to ignore anything that is higher than first
order in this quantity, we also ignore the product of the quantity with it’s derivatives
(hµν ...∂hµν ...) and product of it’s derivatives (∂hµν ...∂hµν ...) , Thus to the first order

gµν = η
µν −hµν (1.11)

where hµν = ηµρηνσ hρσ

In weak gravitational fields one typically raises and lowers indices with the back-
ground Minkowski metric ηµν and ηµν and not with gµν and gµν as the corrections
would be of higher order in perturbation.
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1.3.2 Linearization of Einstein’s Field Equations

To the first order, The Christoffel symbols are given by

Γ
ρ

µν =
1
2

gρλ
(
∂µgνλ +∂νgλ µ −∂λ gµν

)
=

1
2

η
ρλ
(
∂µhνλ +∂νhλ µ −∂λ hµν

)
(1.12)

As we restrict to the first order, the contribution to the Reimann Tensor will be due
to the derivatives of Γs and not the Γ2 terms, giving

Rµνρσ = ηµλ ∂ρΓ
λ
νσ −ηµλ ∂σ Γ

λ
νρ

=
1
2
(
∂ρ∂νhµσ +∂σ ∂µhνρ −∂σ ∂νhµρ −∂ρ∂µhνσ

)
.

(1.13)

Contracting over µ and ρ the Ricci Tensor

Rµν =
1
2
(
∂σ ∂νhσ

µ +∂σ ∂µhσ
ν −∂µ∂νh−□hµν

)
(1.14)

where, h = ηµνhµν = hµ

µ and □= ηµν∂µ∂ν =− ∂ 2

∂ t2 +∇2

which on further contraction gives Ricci scalar

R = ∂µ∂νhµν −□h (1.15)

Using expressions for Ricci Tensor and Ricci scalar the left hand side of the Einstein’s
Field equation

Gµν = Rµν −
1
2

ηµνR

=
1
2

(
∂σ ∂νhσ

µ +∂σ ∂µhσ
ν −∂µ∂νh−□hµν −ηµν∂α∂β hαβ +ηµν□h

) (1.16)

here, Gµν is called as the Einstein Tensor.
Gµν can be rewritten as

Gµν =
1
2
(∂ σ

∂νhσ µ +∂
σ

∂µhσ ν −∂µ∂νh−□hµν −ηµν∂
α

∂
β hαβ +ηµν□h) (1.17)

we define h̄µν = hµν − 1
2 ηµν , which on substitution

Gµν =
1
2
(∂ σ

∂ν h̄σ µ +∂
σ

∂µ h̄σ ν −ηµν∂
α

∂
β h̄αβ −□h̄µν) (1.18)
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1.3.3 Equations in Lorenz Gauge
A change of coordinates can be done where the first three terms can be set to 0.
This coordinate system is called ’Lorenz Gauge’.

In ’Lorenz Gauge’ , ∂β h̄αβ = 0 called as the ’Lorenz condition’.

This condition simplifies Gµν such that

Gµν =−1
2
□h̄µν (1.19)

In this gauge the linearized Einstein’s field equation Gµν = 8πGTµν simplifies further
to

−1
2
□h̄µν = 8πGTµν

□hµν −
1
2

ηµν□h =−16πGTµν

(1.20)

The vacuum equation (when Tµν = 0) is

□h̄µν = 0 (1.21)

The obtained equation is a relativistic wave equation. It can be written as

(
∇

2 − 1
c2

∂ 2

∂ t2

)
h̄µv = 0 (1.22)

whose solution is a waveform travelling at speed of light ’c’. The above equation
determines the evolution of a disturbance in the gravitational field in vacuum in
the harmonic gauge.
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Note

The linear metric perturbation hµν has 16 components. There exists a choice of co-
ordinates called ’Traceless Transverse Gauge’ where the number of independent
components reduce to two components. These independent components corre-
spond to two Polarization of Gravitational waves - ’Plus Polarization’ (+) and ’Cross
Polarization’ (×). Thus all polarizations in this Linearized Gravity formulation are
combination of Plus and Cross polarizations with different amplitude and phases.
A Plus polarized gravitational wave causes a ring of free particles to stretch and
compress along the directions of a Plus sign and a Cross polarized gravitational
wave causes same along the cross sign.
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1.4 Quadrupole approximation

Solving relativistic wave equation, one get the approximation describing gravita-
tional wave strain

Proposition 1.4.1 Gravitational wave strain components are calculated in the follow-
ing way

hi j =
2G
c4d

·
d2Qi j

dt2 (1.23)

Here G is the gravitational constant, c− speed of light in vacuum, d− distance from
the system to the observer. Qi j− system’s quadrupole tensor defined below

Strain is then calculated in the following way

|h|2 =
3

∑
i, j=1

hi jhi j (1.24)

Definition 1.4.1 — Quadrupole moment of a system’s mass distribution. Given that den-
sity distribution of a system is ρ(x) (in Cartesian coordinate system x = (x1,x2,x3))
quadrupole tensor is defined as

Qi j =
∫

d3xρ(x)
(

xix j −
1
3

r2
δi j

)
(1.25)

Where r is the radial distance from the origin, δi j is the Kronecker-delta symbol.
Integration occurs throughout the whole space

Binary systems play a crucial role in gravitational radiation studies and were the
focus of this project. Therefore, it is vitally important to make calculations for this
type of systems.
Further we will use several definitions connected to binary system’s components’
masses m1 and m2

Definition 1.4.2

M = m1 +m2 (1.26)

Definition 1.4.3 — Reduced mass.

µ =
m1m2

m1 +m2
(1.27)

Definition 1.4.4 — Chirp mass.

M =
(m1m2)

3/5

(m1 +m2)1/5 (1.28)

■ Example 1.1 — Quadrupole moment of a binary system. Let ωt be the angle between
the line connecting objects of a binary system and x−axis. Then, the quadrupole
tensor components of the system are

Qi j(t) =
1
2

µr2Ii j (1.29)
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where Ixx =
1
3
+cos2ωt, Iyy =

1
3
−cos2ωt, Ixy = Iyx = sin2ωt, Izz =−2

3
, Ixz = Izx = Iyz = Izy = 0

■

A very important consequence of this expression is strain-dependence evolution,
which could be received from (1.24) and (1.29). GR expression for it is given below.
From (1.29) we get that frequency f of gravitational waves emitted by the system
is equal to twice the orbital frequency of the system (ω/2π)

Proposition 1.4.2 Strain evolution of binary system’s gravitational waves

h(t) = h0 cos(2π f t +π ḟ t2 +φ0) (1.30)

where φ0 is the starting phase
Scaling amplitude is

h0 = 4
G
c2

M

d

(
G
c3 π f M

)2/3

(1.31)

Graph of amplitude-time dependence is represented at the Figure 1.1

Figure 1.1: Time evolution of a binary system’s (with masses 10M⊙ and 20M⊙)
gravitational waves amplitude. Distance to the observer D = 300Mpc

1.5 Frequency-time dependence

Given that the frequency f of gravitational waves emitted by the system is equal
to twice the orbital frequency of the system (ω/2π), from the fact that power of
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gravitational radiation = rate of system’s energy
(

Esystem =−GMµ

r

)
change and

, after integration we get formula for frequency evolution of gravitational waves
emitted by the binary system

Proposition 1.5.1 Frequency-time dependence for binary system’s gravitational
emission

f−8/3 =
(8π)8/3

5

(
GM

c3

)5/3

t (1.32)

where t is time left to merger of two objects

Graph of frequency-time dependence is represented at the Figure 1.2

Figure 1.2: Time evolution of a binary system’s (with masses 10M⊙ and 20M⊙)
gravitational waves frequency. Distance to the observer D = 300Mpc

1.6 Power of gravitational radiation

Using expressions derived above, one can calculate power of gravitational radia-
tion of the system

P =
c3

16πG

∫
|ḣ|2 (1.33)

Here integration happens over a sphere of radius d. Substituting (1.24) and (1.23) to
(1.33), one get expression for power of gravitational radiation through quadrupole
tensor
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Proposition 1.6.1 Power of gravitational radiation

P =
1
5
· G

c6

3

∑
i, j=1

d3Qi j

dt3
d3Qi j

dt3 (1.34)

As already said, the focus of the project was gravitational radiation of binaries.
Therefore, it would be useful to calculate power of gravitational radiation in this
particular case
Using (1.29), (1.34)

■ Example 1.2 — Gravitational radiation of binary system.

P =
32
5

Gµ2r4ω6

c5 (1.35)

Using Kepler’s third law
(
r3 = GM/ω2

)
, one can derive

P =
32
5

G4M5

c5r5 (1.36)

■

1.7 Limits of binary system model acceptability and resulting waveform

All formulas derived above for binary system gravitational radiation are applicable
until merger. Consequently, it would be very useful to understand at which fre-
quency and strain we can assume that the system is about to merge. This happens
when the distance between the two objects is equal to the radius RISCO of the
innermost stable circular orbit.

Proposition 1.7.1 Radius of the innermost stable orbit of a circular binary system

RISCO =
6GM

c2 (1.37)

Given that the frequency f of gravitational waves emitted by the system is equal
to twice the orbital frequency of the system (ω/2π) and Kepler’s third law, one can
derive the frequency at which we assume merger happens

fISCO =

√
GM

π2R3
ISCO

Proposition 1.7.2 Gravitational waves frequency at merger of the binary system

fISCO =
c3

πGM

√
1

216
(1.38)

Taking into account everything derived above, one receives the following wave-
form (Figure 1.3)
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Figure 1.3: Binary system’s (with masses 10M⊙ and 20M⊙) gravitational waves
waveform. Distance to the observer D = 300Mpc



2. Post Newtonian (PN) Theory

2.1 Introduction

The Newtonian Theory of Gravity conveniently suffices for most of astrophysical
calculations. The General Theory of Relativity on the other hand, also bears a
Newtonian Limit in which it reduces to Newtonian Gravity for non-relativistic sce-
narios. In section 1.2, we showed how it is possible to demonstrate the existence of
gravitational waves just by introducing a time delay in the Newtonian Potential (φ ).
The resulting Quadrupole Moment Formalism gives us a good first hand approxima-
tion and differs from the results given by General Relativity only in some aspects.
However, they are based on the assumption that the motion of the source and the
spacetime curvature are independent. Our astrophysical systems of interest for
gravitational wave detection are bound by gravitational forces which renders this
assumption invalid. Thus, for moderately relativistic systems, we need a model that
takes into account the effect of spacetime curvature on the velocity of source
and consequently on the gravitational radiation.
The Post Newtonian Expansion theory is a model which is used to find approximate
solutions to the Einstein Field Equations using expansions in terms of a parameter
(ε). Post Newtonian Expansions were first used by Albert Einstein in calculating the
precession of the perihelion of Mercury’s orbit, which served as one of the first tests
of General Relativity.

2.1.1 Newtonian Limit of General Relativity

In non-relativistic conditions such as slow velocities or weak and static gravitational
fields, General Relativity and its equations of motion reduces to the Newtonian
case. If we assume that the source is moving slowly then the time component of its
4-velocity will dominate the spatial component i.e. the source will have a time-like



2.1 Introduction 19

velocity :

dxi

dτ
<<

dt
dτ

(2.1)

where xi is the ith coordinate in some reference frame and τ is the proper time.
The time-like geodesic equation is given by :

d2xα

dτ2 +Γ
α

γβ

dxβ

dτ

dxγ

dτ
= 0

Due to result (2.1), the geodesic equation becomes :

d2xµ

dτ2 +Γ
µ

00

(
dt
dτ

)2

= 0 (2.2)

We use the relation between the Christoffel symbols and metric tensor to evaluate
Γ

µ

00 as :

Γ
µ

00 =
1
2

gµλ

(
∂gλ0

∂x0 +
∂g0λ

∂x0 − ∂g00

∂xλ

)
Since, we have assumed static gravitational fields for the Newtonian Limit, the first
two terms inside the bracket will vanish and only the final term is retained. Thus,

Γ
µ

00 =−1
2

gµλ

(
∂g00

∂xλ

)
(2.3)

We saw that for a weak gravitational field, the general metric tensor gµν can be
expressed in terms of the Minkowski Metric ηµν plus some small perturbation hµν i.e.

gµν = ηµν +hµν

The matrix gµν is invertible, therefore we can write :

gµνgνα = δ
µ

α = I

where I is the identity matrix. If the perturbation hµν is really small then one can say

(ηµν −hµν)(ηµν +hµν) = I = gµνgνα , because hµνhµν ≈ 0

which implies that :

gµν = (ηµν −hµν)

and also :

gµν = (ηµν +hµν)

For µ = 0,ν = 0 we get

g00 = η00 +h00 = 1+h00 and consequently (2.4)
∂g00

∂xλ
=

∂h00

∂xλ
(2.5)
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The Christoffel Symbol in eqn (2.3) can then be written as :

Γ
µ

00 =−1
2

η
µλ ∂h00

∂xλ
(2.6)

and the geodesic equation (2.2) becomes :

d2xµ

dτ2 =
1
2

η
µλ

(
∂h00

∂xλ

)(
dt
dτ

)2

(2.7)

Now, as the gravitational field is static, ∂h00
∂x0 = 0 and for xµ = x0 = t, eqn (2.7) becomes

:

d2t
dτ2 = 0 (2.8)

For the spatial components (µ ̸= 0) one can write :

d2xi

dτ2 =
1
2

η
µλ

(
∂h00

∂xλ

)(
dt
dτ

)2

where i = 1,2,3

If we write d2xi

dτ2 as d
dτ

(
dxi

dτ

)
, then by applying the product rule it simplifies into :

d2xi

dτ2 =

(
dt
dτ

)2(d2xi

dt2

)
+

dxi

dt

(
d2t
dτ2

)
From result (2.8), the second term will reduce to zero. Therefore

d2xi

dτ2 =

(
dt
dτ

)2(d2xi

dt2

)
Multiplying by dτ

cdt2 on both sides,

d2xi

c2dt2 =−1
2

(
∂h00

∂xi

)
(2.9)

If we assume that h00 =
2φ

c2 , where φ is the Newtonian gravitational potential then
(2.9) reduces to :

d2xi

dt2 =−
(

∂φ

∂xi

)
(2.10)

In other words, as d2xi

dt2 is just the spatial acceleration and ∂

∂xi is the spatial gradient,
equation (2.10) can be written as :

g =−∇φ where g is acceleration due to gravity (2.11)

which is nothing but an alternate statement of Newton’s Law of Gravitation. Thus,
under appropriate conditions and assumptions, the General Theory of Relativity
reduces to Newton’s Law of Gravitation. Furthermore, we assumed that h00 =

2φ

c2 ,
thus from equation 2.4:

g00 = 1+
2φ

c2 (2.12)
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2.2 The Small Parameter and Constraints of PN Theory

The Post Newtonian Theory is an effective way of obtaining an approximate solu-
tion to the Einstein Field Equations. In a way, this theory quantifies the deviation
from a completely Newtonian source towards moderately relativistic sources and
depicts the non-linearity of General Relativity. This is achieved by expanding the
approximate solutions in terms of n- orders of a parameter ε which is a ratio of the
source velocity v to the speed of light c : (v/c). Such terms will be called as the
Post-Newtonian corrections of nth order or n

2 PN Terms. It is also observed that:

ε ∼
√

Rs

d
∼ v

c

Where Rs = 2GM/c2 is the equivalent of Schwarzschild Radius of the source and d is
the size of the system (for e.g. orbital radius in case of a binary system).

Thus ε also characterizes the compactness of source. This Post Newtonian Ex-
pansion is applicable in the domain of moderately relativistic and weakly self-
gravitating sources (ε << 1) in the Near Field Region only, for which the parameter
ε has a small value and retardation effects due to the gravitational waves are
negligible. It is assumed that the Stress Energy Momentum Tensor for the source
T µν has a spatially compact support i.e. the source can be enclosed in a time-like
tube of world lines for which r ≤ d. We also assume that the matter inside the source
is smooth and continuous which implies that T µν(t,x) is infinitely differentiable over
the entire space-time. In addition, we impose the condition that the source be
weakly stressed i.e.

T i j

T 00 = O(ε2)

For a fluid, the first entry of the Stress Energy Momentum Tensor (T 00) corresponds
to the energy density ρ. If p is the pressure in fluid then :

p
ρ
= O(ε2)

In the limit of ε → 0, the Post Newtonian Approximation reduces to the Newtonian
theory for non-relativistic sources. In case of a Compact Binary Coalescence, Post
Newtonian Approximation is effective throughout the inspiral phase. Since, at the
merger phase, relativistic effects take precedence and ε is no longer small. In
this regime, other models such as Numerical Relativity and Effective One-Body
Simulation are required.
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2.3 Post Newtonian Expansion of Einstein Equations

Having introduced the parameter ε , we then expand the metric tensor gi j and the
Stress Energy Momentum Tensor T i j in powers of ε. The metric tensor is expanded
as follows :

g00 =−1+ (2)g00 +
(4)g00 +

(6)g00 + ....

g0i =
(3)g0i +

(5) g0i + .... (2.13)

gi j = δi j +
(2)gi j +

(4)gi j + ....

The Energy Momentum Tensor is expanded as :

T 00 = (0)T 00 + (2)T 00 + ....

T 0i = (1)T 0i + (3)T 0i + .... (2.14)

T i j = (2)T i j + (4)T i j + ....

where (n)gµν and (n)T µν denote terms of order εn in the expansion.

These expansions are then substituted in the Einstein Field Equations and terms of
the same order in ε are equated. In Post Newtonian Expansions, we assume an
almost non-relativistic motion of source. Due to this, the d’Alembertian operator or
square operator □ applied to the metric to the lowest order reduces to ordinary
Laplacian operator ∇2 i.e.

− 1
c2

∂

∂ t2 +∇
2 = [1+O(ε2)]∇2 (2.15)

This implies that retardation effects in the gravitational potential φ are small cor-
rections. In lowest order, the solution can be approximated as instantaneous
potentials without any retardation effects. Therefore, we are computing some
quantity F(t − r/c) which is an intrinsic function of the retarded time t − r/c, in terms
of expansions for small retardation :

F(t − r/c) = F(t)− r
c

Ḟ(t)+
r2

2c2 F̈(t)+ .... (2.16)

Each derivative of F with respect to time has some factor of ω , where ω is angular
frequency of the gravitational radiation emitted.

R Since ω/c = 1/λ (where λ is the reduced wavelength),it can be seen that
equation 2.4 is actually an expansion in powers of r/λ .Thus, the expansion will
break down in the radiation zone when r >> λ . This is the reason as to why
the Post Newtonian Expansion is valid in the near zone where r << λ .
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2.4 1 PN Corrections

We employ a gauge condition (co-oordinate choice) known as the De-Donder
gauge (or Harmonic Gauge) :

Definition 2.4.1 The De-Donder gauge condition is defined as : ∂µ(
√
−ggµν) = 0.

The resulting coordinates are called as Harmonic coordinates.

An appropriate choice of gauge condition can drastically simplify our calculations
and expressions. By substituting the expansions (2.12) and (2.13) in the Einstein
equations and using the gauge condition (2.4.1) expanded to the required order,
for (2)g00 we get :

∇
2[(2)g00] =−8πG

c4
(0)T 00 (2.17)

and for 1 PN corrections to the metric :

∇
2[(2)gi j] =−8πG

c4 δ
i
j
(0)T 00 (2.18)

∇
2[(3)g0i] =

16πG
c4

(1)T 0i (2.19)

∇
2[(4)g00] = ∂

2
0 [

(2)g00]+
(2)gi j∂i∂ j[

(2)g00]−∂i[
(2)g00]∂ j[

(2)g00] (2.20)

− 8πG
c4 [(2)T 00 + (2)T ii −2 (2)g00

(0)T 00]

Under the boundary condition that the metric vanishes at spatial infinity (r → ∞),
the solution for equation (2.17) is :

(2)g00 =−2φ (2.21)

where,

φ(t,x) =−G
c4

∫
d3x′

(0)T 00(t,x′)
|x− x′|

is the negative Newtonian potential. (2.22)

R It is observed that this solution (2.21) for the expanded metric (2)g00 is also
apparent from the result (2.12) obtained in evaluating the Newtonian limit of
GR.

Similarly, the 1 PN equations for other metric components can be solved to give :

(2)gi j =−2φδ
i
j (2.23)

(3)g0i = ζi for, (2.24)

ζi(t,x) =−4G
c4

∫
d3x′

(1)T 0i(t,x′)
|x− x′|

(2.25)

Finally, to solve equation (2.20) we substitute the solutions (2.21) and (2.23) into the
right hand side. Writing (4)g00 as :

(4)g00 =−2(φ 2 +ψ) (2.26)
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where ψ is some potential.
Using the identity :

∂i∂ jφ =
1
2

∇
2(φ 2)−φ∇

2
φ (2.27)

equation (2.20) then becomes :

∇
2
ψ = ∂

2
0 +

4πG
c4 [(2)T 00 +(2) T ii] (2.28)

Similar to equation (2.17) with the boundary condition that ψ goes to zero at infinity,
the above equation has a solution :

ψ(t,x) =−
∫ d3x′

|x− x′|

(
1

4π
∂

2
0 φ +

G
c4

[
(2)T 00(t,x′)+(2) T ii(t,x′)

])
(2.29)

As discussed before, since we are computing the PN terms at a lower order of n=2,
the solutions φ ,ζ and ψ are actually instantaneous potentials. They depend on
the value of Energy Momentum tensor at time t rather than at the delayed time
t − r/c. However, it is possible to express the solution in terms of retarded potentials
evaluated at the delayed time. The 1 PN Corrections for g00 can be written as :

□V =−4πGσ (2.30)

The solution V (t,x) is then expressed as a retarded integral :

V (t,x) = G
∫

d3x′
1

|x− x′|
σ

(
t − |x− x′|

c
,x′
)

(2.31)

V (t,x) can be given in terms of instantaneous potentials by expanding the σ

(
t − |x−x′|

c ,x′
)

for small retardation effects till the 1 PN Order. Similarly, for g0i and gi j we have :

Vi(t,x) = G
∫

d3x′
1

|x− x′|
σi

(
t − |x− x′|

c
,x′
)

(2.32)

In terms of these functions then, the 1 PN solutions are :

g00 =−1+
2
c2V − 2

c4V 2 +O
(

1
c6

)
(2.33)

g0i =− 4
c3Vi +O

(
1
c5

)
(2.34)

gi j = δ
i
j

(
1+

2
c2V

)
+O

(
1
c4

)
(2.35)
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2.5 Radiation Reaction and 2.5 PN Terms

It is known that the emission of gravitational radiations from a source carry energy
with them. According to the Law of Conservation of Energy, this energy must be
derived from the source itself, which in turn should affect the motion of the source.
This is known as “Radiation Reaction”. The Post Newtonian corrections of higher
order account for this back reaction or radiation reaction due to gravitational
waves on the source. To determine the radiation reaction, we start by computing
the gravitational potential inside the source. It is possible to start with the Relativistic
Potential introduced in section 1.2 and expand it in powers of r/c which is the usual
procedure of Post Newtonian Expansions. Starting with the Relativistic potential:

φR(x, t) =−G
∫

ρ(y, t − r/c)r−1d3y,r ≡ |x−y| (2.36)

We assume that x and y are of the same order and expand the mass density (ρ) in
terms of r/c around ρ(t).

φR =−G
∫

r−1
∞

∑
n=0

(
− r

c

)n 1
n!

dn

dtn ρ(y, t)d3y (2.37)

This is a Near Zone expansion, which is the domain in which the Post Newtonian
theory is applicable. Technically, the order of expansion n can run till infinity but
we will truncate the expansion up to the 5th order (n = 5):

φR =−G
∫

r−1
5

∑
n=0

(
− r

c

)n 1
n!

dn

dtn ρ(y, t)d3y (2.38)

A total of six terms are obtained as a result. The first term in this expansion corre-
sponding to n = 0 is:

φN =−G
∫

ρr−1d3y, (2.39)

which naturally represents the Newtonian potential (φN).
The factors of r cancel in second term and we get:∫

ρ̇d3y = 0 (2.40)

The third term is:

φPN =− G
2c2

∫
rρ̈d3y (2.41)

It represents the first Post Newtonian or 1 PN term, which can also be obtained
from (eqn 2.22).
The fourth term is independent of x and can be neglected. Next, the fifth term
corresponding to n = 4 :

φ2PN =− G
24c4

d4

dt4

∫
ρr3d3y (2.42)
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Represents the 2 PN correction.
Finally, the sixth term for n = 5 :

φ2.5PN =
G

30c5

(
(xix jQ

(5)
i j +

1
2
|x|2Q(5)

kk − xiT
(5)

i

)
(2.43)

where Q(5)
i j is the fifth time derivative of the Quadrupole Tensor Qi j and

Ti =
∫

ρyi|y|2d3y (2.44)

Equation 2.42 gives us the 2.5 PN term. This is the term that accounts for the
Radiation Reaction due to emission of gravitational waves.
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2.6 The Post Newtonian Waveform

The 2 PN Waveform is generated by determining the frequency evolution f (t),
amplitude evolution h(t) and phase evolution ψ(t) as functions of time with Post
Newtonian Corrections.

2.6.1 Frequency-time dependence
In order to get the frequency evolution, we can start with the Newtonian frequency
relation (1.32) from section (1.5).

f−8/3 =
(8π)8/3

5

(
GM

c3

)5/3

(tc − t) (2.45)

Here tc is the time of coalescence. We set it to 0 and consider negative time
arguments for t. This equation can be modified and written as:

t − t∗ = τ0

[
1−
(

f (t)
f∗

)−8/3
]

(2.46)

where, (2.47)

τ0 =
5

256π
f−1
∗ (πM f∗)−

5
3 v−1 (2.48)

(2.49)

M =
Gm
c3 (2.50)

m = m1 +m2 being the total mass of the system and v = µ/m (2.51)

t∗ is any arbitrary reference time and f∗ is the frequency at that time. t∗ could be for
example the time at which the gravitational wave signal enters into the detector.
Since, the lower bound of the LIGO frequency sensitivity range is 10 Hz, f∗ can be
considered as 10 Hz.
We can now define the Post Newtonian corrections up to the 4th order using the
following constants :

τ1 =
5

192π
f−1
∗ (πM f∗)−1v−1

(
743
336

+
11
4

v
)

(2.52)

τ1.5 =
1
8

f−1
∗ (πM f∗)−

2
3 v−1 (2.53)

τ2 =
5

128π
f−1
∗ (πM f∗)−

1
3 v−1

(
3058673
1016064

+
5429
1008

v+
617
144

v2
)

(2.54)

The constants τ1,τ1.5 and τ2 represent the 1 PN, 1.5 PN and 2 PN corrections respec-
tively. In terms of these constants, the equation (2.46) receive the PN corrections
as:

t − t∗ = τ0

[
1−
(

f (t)
f∗

)−8/3
]
+ τ1

[
1−
(

f (t)
f∗

)−2
]
− τ1.5

[
1−
(

f (t)
f∗

)−5/3
]
+ τ2

[
1−
(

f (t)
f∗

)−4/3
]

(2.55)

The "chirp" of frequency (d f/dt) using this equation can be expressed as:

d f
dt

=
3 f∗
8τ0

(
f
f∗

)11/3
[

1− 3
4

τ1

τ0

(
f
f∗

)2/3

+
5
8

τ1.5

τ0

(
f
f∗

)
− 1

2

(
τ2

τ0
− 9

8

(
τ1

τ0

)2
)(

f
f∗

)4/3
]

(2.56)

By solving this differential equation numerically, we obtain the frequency evolution
of gravitational waves. For m1 = m2 = 35M⊙ the frequency domain plot is as follows :
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Figure 2.1: Frequency-time dependence using PN terms.

Figure 2.2: log(f) vs t using PN terms.

2.6.2 Phase Evolution and Amplitude Evolution
The accumulated phase ψ( f (t)) which depends on frequency f (t) after receiving
2 PN corrections becomes :

ψ(t) = 16
5 τ0 f∗

[(
1−
(

f
f∗

)−5/3
)
+ 5

4
τ1
τ0

(
1−
(

f
f∗

)−1
)
− 25

16
τ1.5
τ0

(
1−
(

f
f∗

)−2/3
)
+ 5

2
τ2
τ0

(
1−
(

f
f∗

)−1/3
)]

(2.57)

The amplitude evolution h+(t) is same as that of the Newtonian case. However, the
amplitude phase δ+ receives Post Newtonian corrections and is written as:

δ+(t) = 2π f (tc + r/c)−ψ0 − π

4 +2π f∗

[
3τ0
5

(
f
f∗

)−5/3
+ τ1

(
f
f∗

)−1
− 3τ1.5

2

(
f
f∗

)−2/3
+3τ2

(
f
f∗

)−1/3
]

(2.58)

Using these terms of frequency, phase and amplitude evolution, the general wave
equation can be used to generate the Post Newtonian Waveforms.
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3. Waveforms

In the following chapters, wave-forms for a binary system at D = 300 Mpc are given.

3.1 Newtonian Approximation

(a) Binary system’s (with masses 15M⊙ and 15M⊙) gravitational waves waveform obtained
using the Newtonian approximation
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(a) Masses 15M⊙ and 25M⊙

(b) Masses 15M⊙ and 35M⊙

(c) Masses 25M⊙ and 35M⊙

(d) Masses 30M⊙ and 35M⊙
Figure 3.2: Binary system’s gravitational waves waveform obtained using the
Newtonian approximation
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3.2 Post-Newtonian Corrections

(a) Binary system’s (with masses 15M⊙ and 15M⊙) gravitational waves waveform obtained
using the PN-expansion

(b) Masses 15M⊙ and 25M⊙ (c) Masses 15M⊙ and 35M⊙

(d) Masses 25M⊙ and 35M⊙ (e) Masses 30M⊙ and 35M⊙
Figure 3.3: Binary system’s gravitational waves waveform obtained using the PN-
expansion



34 Chapter 3. Waveforms

3.3 Comparison of time of coalescence

The post-Newtonian corrections lead to a delayed coalescence time as compared
to the Newtonian approximation. In other words, the post-Newtonian model has
the frequency rise slightly slower than the Newtonian model.

We estimate time of coalescence tc by the time for any particular model at which
the frequency reaches fISCO (1.38), the frequency of the Innermost Stable Circular
Orbit (ISCO), and call this estimate tISCO.

This delay varies with the mass, which is discussed in 3.3.1.

Below are some plots showcasing this for both black holes having mass 35M⊙.

Figure 3.4: The variation of frequency with time for the Newtonian and Post-
Newtonian models, starting from f ∗ = 10 Hz , t∗ = 0 sec (with both masses 35M⊙)
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Figure 3.5: The variation of tN
ISCO and tPN

ISCO with the initial frequency (with masses
35M⊙ and 35M⊙)

Figure 3.6: The variation of ∆tISCO = tPN
ISCO− tN

ISCO with the initial frequency (with masses
35M⊙ and 35M⊙)

Below, the complete wave-forms for both models (N and PN) have been plotted
in strain vs time graphs for various masses.
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(a) Binary system’s (with masses 15M⊙ and 15M⊙) comparison of gravitational waves
waveforms gained via PN-expansion and Newtonian approximation

(b) Masses 15M⊙ and 25M⊙ (c) Masses 15M⊙ and 35M⊙

(d) Masses 25M⊙ and 35M⊙ (e) Masses 30M⊙ and 35M⊙
Figure 3.7: Binary system’s comparison of gravitational waves waveforms gained
via PN-expansion and Newtonian approximation
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3.3.1 Variation of delay with Mass
In an equal mass binary system with the aforementioned PN corrections the de-
lay in coalescence time compared with Newtonian approximation results show
following trend. The mass corresponds to the member of a binary system.

Figure 3.8: The variation of delay in time of coalescence with the mass of a member
of an equal mass binary system.

The Delay decreases with the Mass. The value for delay stays positive for mass
values below 50M⊙ and continues decreasing further, which corresponds to shorter
time of coalescence for systems with Post Newtonian corrections compared to
Newtonian Approximation.
This decreasing trend in delay with increasing mass can be partly explained due
to the limits within which Post Newtonian Theory is effective. It was discussed earlier
that the Post Newtonian Formalism is applicable only for weak self-gravitating
sources. Beyond the threshold value of 50M⊙ , the gravitational fields of our binary
system are no longer weak and cannot be regarded as moderately relativistic.
Therefore, we start getting a negative delay or difference in the time of coales-
cence for the two waveforms. Another reason behind this negative delay could
be related to the radius of Innermost Stable Circular Orbit (RISCO) and frequency
at ISCO ( fISCO). As masses of the members of binary system increases the corre-
sponding Schwarzschild radii will increase and the value of RISCO will also increase.
Consequently, the black holes in our binary system would reach the merger phase
earlier as compared to the lower mass counterparts, resulting in a shorter length
of the inspiral phase of waveform and lower fISCO. The Post Newtonian correction
terms may exaggerate this and have an opposite effect on the length of the wave-
form due to lower frequency values. As a result, the Post Newtonian waveform
has a shorter length than the Newtonian approximation waveform giving rise to a
negative delay for higher masses.
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4.1 Concept of Matched Filtering

The strain data collected by LIGO and VIRGO interferometers is prone to external
noise which is substantial enough to obscure any gravitational wave signal. This is
because we are attempting to detect changes in space of the order of almost
10−20m. At such exceedingly small scales, even the slightest of disturbances due
to seismic activities, instrumental noise, etc. can induce unwanted noise in the
data. Although, numerous statistical methods can be used to reduce the noise,
a firsthand methodology is still necessary. Matched Filtering is one such method
that can be used to detect the presence of gravitational waves that are loud
enough in a noisy data. The strain data collected by LIGO and VIRGO detectors
is a time-series that can be decomposed into a noise component and a signal
component (if there is any):

h(ti) = n(ti)+ s(ti) (4.1)

It is usually assumed that the noise component is static in time and follows a Normal
(Gaussian) distribution. The process of Matched Filtering involves a bank of gravita-
tional waveform templates which are generated using various approximants. This
method relies on knowing or predicting the possible shape of gravitational wave
signal in the strain data. The template waveform (w(t)) is then compared with the
strain data (h(t)) by shifting the waveform against the data and calculating the
cross-correlation in the time domain at each time step (assuming a static and
Gaussian noise allows us to do so). This cross correlation output is also defined as
the Signal to Noise Ratio or the SNR times-series (ρ(t)).

ρ(t) = 2
∫

∞

−∞

h(t ′) ·w(t ′− t)dt ′ (4.2)

Whenever the template waveform matches with the gravitational wave signal
in strain data we get a spike in the Signal to Noise Ratio. This spike in SNR is also
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called as a “trigger”. Thus, a higher value of SNR localized at a point in time can
be interpreted as presence of a gravitational wave signal in the noisy data. The
process of matched filtering is carried over for different template waveforms in the
template bank and the template with highest SNR is chosen to get an estimate
of source parameters. The portions of data with high enough SNR is often taken
for a Chi-squared (χ2) test of hypothesis to eliminate any possibility of instrumental
glitches giving rise to false triggers.

4.2 Matched Filtering of GW150914

4.2.1 Retrieving and Pre-conditioning the strain data for GW150914

We chose the GW150914 merger event for Matched Filtering with the generated
waveforms. GW150914 was the first ever direct observation of gravitational waves
in 2015 that originated from the merger of two black holes at a distance of around
500 mega-parsecs from Earth. The two black holes had a nearly equal mass of
about 30 solar masses. In the generated waveforms, we assumed a mass of 35 solar
masses for both black holes. The strain data for GW150914 event is available on the
LIGO GWOSC website and can be retrieved manually or through Python interface
and packages like GWOSC, GWpy or PyCBC. The time-series of 32 second strain
data of GW150914 was retrieved using PyCBC:

Figure 4.1: LIGO Strain Data for GW150914

The data has a sampling frequency of 4096 Hz, which gives a sampling time
of around 0.00244498777 seconds. Here, the time along X-axis is the GPS time
measured in seconds from the start of the GPS Epoch.
This data needs to be pre-conditioned to ensure optimal matched filtering. We first
bandpassed the data in the frequency range of 10-512 Hz. This range corresponds
to the frequency band in which the LIGO detectors are most sensitive. This elimi-
nates the low and high frequency noise components from our data. Next, we trim
our data length to match the length of generated waveforms as this is essential in
carrying out the cross-correlation.
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4.2.2 Matched Filtering with the Newtonian approximation Waveform
The plot of strain data in Figure 4.1 is filled with an overwhelming amount of noise.
Our gravitational wave signal is buried somewhere in this noise. First we carry
out Matched Filtering of this data with the approximate Newtonian waveform
generated in the previous section. The following plot of SNR timeseries is obtained:

Figure 4.2: Matched Filtering with Newtonian Waveform

A discernible spike in the SNR is observed at around 1126259462.394287 seconds
GPS time. The matched filtering process returns negative values of SNR. This is due
to a complex valued SNR associated with the template component that is out of
phase with the data by π/2. Since the phase of signal can be anything, we take
absolute values of the SNR and plot them:

Figure 4.3: Maximized Signal to Noise Ratio Plot

We get a peak SNR value of about 7.0931 at 1126259462.3891602 seconds GPS
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time. Hence, the Newtonian waveform yielded a sufficiently good Signal to Noise
Ratio with Matched Filtering. Further processing of the strain data like whitening
can give a better SNR value. The GPS time at which the peak is observed matches
with the GPS time of 1126259462.4 seconds as mentioned in the GWOSC Event
Catalog, to a reasonable degree of accuracy.

4.2.3 Matched Filtering with the PN Waveform
The Post Newtonian waveform was generated in the previous section. Matched
Filtering of the data was done with this waveform and the SNR was maximized by
taking absolute values as shown previously. The following SNR time series plot was
obtained:

Figure 4.4: Matched Filtering with the Post Newtonian Waveform

A peak SNR of 12.83834 is observed at 1126259462.4233398 seconds GPS time. This
value is nearly twice the value of maximum SNR obtained using the approximate
Newtonian waveform.

Figure 4.5: A side by side comparison makes this difference more apparent.

Furthermore, the time at which the trigger is observed (1126259462.42) matches
with the event GPS (1126259462.4) according to the GWOSC Event Catalog. It is
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evident that the Post Newtonian waveform is more efficient in finding gravitational
wave signals buried in the data than just the Newtonian waveform. This is because
the frequency as well as the phase evolution terms in the waveform receive Post
Newtonian corrections which introduce a delay in the time of coalescence as
compared to the Newtonian waveform. The delay causes our signal (which we
assume to be from a Post Newtonian source) to remain in the detector for a longer
time hence resulting in a higher Signal to Noise Ratio. Consequently, it can be
shown that PN corrections of higher orders will give an even better SNR.
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5. Conclusion and Discussion

This project was an intermediate approach to the formalism of General Relativity
and gravitational wave signal modeling. While, many accurate models like Nu-
merical Relativity and Effective One-Body Simulation exist, the Newtonian and Post
Newtonian approximations can be vastly convenient and accurate in modeling
gravitational wave signals for the Inspiral phase of waveform, even till and at the
merger. The concreteness of Newtonian Gravity is proved, when by just adding
a simple time delay to the Newtonian Potential explained a seemingly relativistic
phenomenon. In Post Newtonian theory, we still partly adhered to the Newtonian
Theory whilst adding the PN Corrections. The effectiveness of Post Newtonian
Expansions was evident from our results of Matched Filtering. Naturally, a compu-
tation of higher PN order would yield much better results by considering effects
like Radiation Reaction and the “Hereditary terms”. However, several difficulties
arise when using the Post Newtonian Expansions at higher orders. These difficulties
occur mostly in the form of divergent integrals when either of the source masses
go beyond a certain threshold value. Furthermore, the Post Newtonian formalism
breaks down for boundary conditions at infinity (r → ∞).
Nevertheless, the Post Newtonian Theory continues to serve as a powerful tool in
studying non-relativistic to moderately-relativistic phenomenon. With the advent
of new detectors and technologies like LIGO India, we are bound to discover
many more merger events and gravitational wave signals where these models will
prove valuable as a first step in the process of data analysis, signal modeling and
parameter estimation.
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