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Abstract

This project focuses on the simulation of astrophysical systems under the influ-
ence of a gravitational potential using the Barnes-Hut algorithm and the imple-
mentation of algorithms for outputting initial conditions for various astrophysical
structures. This report gives basic details about the astrophysical structures in the
universe and the currently understood mechanisms of galaxy formation and evolu-
tion. We then move on to methods to simulate systems involving a gravitational
potential and talk about the Barnes-Hut algorithm, the driving force behind the
simulations in this project. We then detail various models implemented to obtain
initial conditions for the simulated systems, including Plummer model and Dehnen
density and potential pairs. The report ends with an analysis of the notable features
of the simulated systems.
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1. Introduction

The earliest galaxies in the universe took shape as little as 1 billion years into their life-
time. Two main ideas are given the most weight when discussing galaxy formation:
The inward collapse of giant clouds of dust and gas under its own gravitational pull
and the merging of small "lumps" of matter that resulted from density fluctuations
in the early Universe. Newer research into this field focuses on topics like spiral arm
formation and the effect of supermassive black holes on the galaxy’s shape, to
mention a few. In the astrophysical context this is particularly important for under-
standing galaxy interactions which are observed in the far and nearby universe

In this project, the main focus is on studying the evolution of galaxies and other
astrophysical structures, considering only the effect of the gravitational force
between the particles of the universe. Since gravitational forces constitute a
significant component of the internal dynamics of the galaxy, we hope to see
a decent reproduction of a galaxy’s evolution with time. The study of the time
evolution of galaxies allows us to trace back observational data to unravel the
behaviour of galaxies at different scales and under different conditions. Data from
telescopes like SKA, JWST, and Spitzer is being used to analyze the structure of
galaxies. Galaxy evolution is also critical to understand how matter was distributed
in the early universe.

————————————————————————



2. Basic Systems

2.1 Newton’s Law of Gravitation

• The equation for computing the force caused by the rest of the particles on
a single particle can be computed by the law of gravity:

Fi j = mir̈i = G
N

∑
i=1, j ̸=1

mim j
(⃗ri − r⃗ j

|⃗ri − r⃗ j|3
(2.1)

With-:
– Fi j = Force acting between particles i and j
– G = Gravitational constant
– mi,m j = Mass of the particle i and j
– r⃗i − r⃗ j = Position of the particle i and j

2.2 Solar System

We start with a well-known system: our very own Solar System. The solar system
consists of the Sun, eight major planets, many minor planets, and other smaller
structures. We pulled data on the Sun and eight significant planets and introduced
it into Python. We then write a simple brute-force calculation to evolve the system,
which is just calculating the force between objects pair by pair and updating the
velocities and positions of the objects at each time step.

Figure 2.1 shows the orbits of the four inner planets, i.e. Mercury, Venus, Earth
and Mars. The orbits are ellipses as expected, and the orbits are closed to a large
degree. The precession expected due to the influence of the other planets shows
up over a considerable simulation length. Energy conservation is obeyed quite
well, with the kinetic and potential energy of the system following virial theorem to
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(a) Solar System (b) Energies

(c) Kinetic Energy (d) Potential Energy.

a large degree of accuracy (Figure 2.2). This is a great starting point to increase
the number of particles and see the effect it has on the dynamics of the system
and the time taken to simulate the system.

2.3 Asteroid Belt

The next system we are using to illustrate such calculations is a basic mock up of an
asteroid belt existing between Mars and Jupiter. The asteroid belt is a torus-shaped
region in the Solar System, located roughly between the orbits of the planets
Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of
many sizes, but much smaller than planets, called asteroids or minor planets. This
asteroid belt is also called the main asteroid belt or main belt to distinguish it from
other asteroid populations in the Solar System such as near-Earth asteroids and
trojan asteroids.

The asteroid belt is the smallest and innermost known circumstellar disc in the Solar
System. About half its mass is contained in the four largest asteroids: Ceres, Vesta,
Pallas, and Hygiea. The total mass of the asteroid belt is about 4% that of the Moon.

To initialize the system, the asteroids were given a random position somewhere be-
tween Mars and Jupiter by assigning them a radius and an angle in a plane polar
coordinate system. The potential energy of every new asteroid was calculated
with reference to all objects already in the system and a velocity was assigned
based on virial theorem considerations. A mass was also randomly assigned to
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(a) Asteriod Belt mockup (b) Energies

(c) Kinetic Energy (d) Potential Energy.

each object based on data of the range of masses present in our asteroid belt.
The graphs show a well behaved system where energy conservation is obeyed
and the virial theorem is satisfied even as time evolves.

A very interesting phenomenon is seen if the initial conditions are not forced
to follow the virial theorem. If the velocities and positions are distributed randomly,
there is chaotic motion in the system. Particles will leave the asteroid belt at ran-
dom when they are in a favourable position to do so, but this does not guarantee
that the system will tend to go to a state where only particles with close orbits will
remain significant in the system and equilibrium is restored.



3. Numerical Methods

3.1 Brute Force Method

In the Brute Force approach, we calculate all the possible solutions to find a
satisfactory answer to a given problem. i.e. we will calculate the net force on mass
mi due to the rest of the mass distribution and iterating for each mass.

3.1.1 Algorithm
Initialization

The initial state of all Bodies is allocated to the three-dimensional fixed-length
arrays:

1 t0 = 0
2 dt = 86400; #time -interval
3 tf = 86400* 365 * 10
4 G = 6.67e-11 # Universal Gravitation Constant
5

6 t = arange(t0,tf+dt , dt)
7 r = zeros ((len(t) ,3,9))
8 v = zeros ((len(t) ,3,9))
9 m =array ([1.989*10**6 ,0.33011 ,4.867 ,5.97 ,0.64 ,1898 ,568.34 ,86.81 ,102.41])

*10**24
10 r[0,0,:]= array

([0 ,57.9 ,108.21 ,149.59 ,227.92 ,778.57 ,1453.53 ,2872.46 ,4495.06]) *10**9
11 v[0,1,:]= array ([0 ,47.36 ,35.02 ,29.78 ,24.07 ,13 ,9.68 ,6.8 ,5.43]) *10**3

[language=Python]

Propagation

To seed the force of the simulation, an initial state is needed for the systems
depending on gravitational or electric potential.Acceleration of particle is a result
of summed force vectors, divided by the mass of the particle: a⃗ = F⃗

m .
In basic propagation mechanisms, the Euler method is used below. The position
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of an object at tn+1 is only dependent on its velocity at tn, as the shift in position is
calculated via: r⃗tn+1 = r⃗tn + v⃗tn

1 for i in range(len(t) -1):#Time -Frame
2 for j in range (1,5):# 4 = No. of Planets
3 a = np.zeros (3) # acceleration vector
4 for k in range (5):
5 if k!= j:
6 Rmag = np.linalg.norm(r[i,:,j]-r[i,:,k])# Magnitude of the distance

between jth and kth object
7 a[:] += -((G*m[k])/(Rmag)**2)* (r[i,:,j]-r[i,:,k])/(Rmag)
8 v[i+1,:,j] = v[i,:,j] + a[:]*dt
9 r[i+1,:,j] = r[i,:,j] + v[i+1,:,j]*dt

• The algorithmic complexity of solving an N-body system through a brute-force
approach is N(N−1)

2 ≈ O(N2), making it impossible to simulate a system with
more than a million objects, even on a high-end supercomputer.

3.2 Barnes-Hut Algorithm

• It uses a tree-based approximation scheme which reduces the problem’s
computational complexity from O(N2) to O(NlogN).

• The crucial idea in speeding up the brute force n-body algorithm is to group
nearby bodies and approximate them as a single body.

• This approximation is valid as long as the distance(d) from a point group
to a particle is large and the radius of the group(r) is small to the distance
between the group and the particle. The ratio of group distance (d) and
group radius (r) is called the Multipole-Acceptance-Criterion (MAC):

θ =
r
d

(3.1)

We will always use θ = 0.5, a value commonly used in practice. Note that
if θ = 0, no internal node is treated as a single body, and the algorithm
degenerates to brute force.

• If the group is sufficiently far away, we can approximate its gravitational
effects using its centre of mass. Formally, if two bodies have positions (xi,yi)
and (xi,yi), and masses mi and m j, then their total mass and centre of mass
(Rx, Ry) are given by-:

M = mi +m j (3.2)

Rx = (mixi +m jx j)/m (3.3)

Ry = (miyi +m jy j)/m (3.4)
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3.2.1 Algorithm
Constructing the Barnes-Hut Tree

1. The algorithm starts by subdividing the domain into quadrants. Based on their
location, We will refer to these quadrants by the following names: NW, NO,
SW, and SO.

2. To add a particle to the tree, its quadrant is determined. If another particle is
in the same quadrant, the quadrant is subdivided again.

3. This is repeated until each particle is located in its quadrant (however small
this quadrant may be)

4. The InsertParticle algorithm must be run for every particle in the simulation.
The following pseudocode can describe it:

InsertParticle(Particle,Node):
if(Particle.position is not in node):

end function # if particle is not in node’s bounding box return
else:

if (node has no particle):
Node.Particle = Particle

if(node is an internal node): #(that is, it has child nodes)
updateCenterOfMass(Node) # update center of mass of node
updateTotalMass(Node) # update total mass of node for child

else:
if Node.Child is None:

Node.Create_child()
Node.particle() = append.Particle
for particles in Node.Particle():

Insert(particles,Node.Child)
else:

for Child in Node.Child(): #All childs of a Parent Node
InsertParticle(Particle,Child)

Calculating the Net Force
The "Dynamics" Algorithm takes in the particle we want to calculate the force for,
the node we are currently comparing against, and θ (the opening angle).
To calculate the net force acting on body b, use the following recursive procedure,
starting with the root of the quad-tree:

1. If the current node is external, calculate the force exerted by the current
node on the given particle and add this amount to the net force.

2. Otherwise, calculate the ratio r
d . If r

d < θ , treat this internal node as a single
body, calculate the force it exerts on the particle, and add this amount to
the net force on the given Particle.

3. Otherwise, run the procedure recursively on each of the current node’s
children.

4. The Dynamics algorithm must be run for every particle in the simulation. The
following pseudocode can describe it:
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Function Dynamics(Particle, Node, ThetaTolerance):
if(Node.Children) is None: # directly sum this
node’s particle’s force on the particle we’re considering

return Net_Force(Node,Particle)
else:

Theta = Node.Size/Distance(Node.Centre_of_Mass, Particle.Position)
if Theta is less or equal to ThetaTolerance :
# far field approximation is valid

return farFieldForceCalc(Node.mass, Node.Centre_of_Mass, particle)
else:

for Child in Node.Children:
Dynamics(Particle, Child,ThetaTolerance)

3.3 Head to head

The comparison between the new Barnes Hut algorithm (orange curve) and our
old brute force method (blue curve) is striking. For tiny particle numbers, the brute
force method is better. But as soon as the particle numbers cross 200, the Barnes
Hut method takes over convincingly. Even at these smaller particle numbers, the
brute force method showed an energy discrepancy of about 1%, whereas the
Barnes-Hut process showed less than 0.01%. It is a far superior method for simulating
systems with many particles.

Figure 3.1: Comparison: Barnes Hut (orange) vs Brute Force (blue)



4. Stellar Cluster Simulation

4.1 Stellar Clusters

A star cluster is a group of stars that share a common origin and are gravitationally
bound for some time. They benefit astronomers by providing a way to study and
model stellar evolution and ages. The two basic categories of stellar clusters are
open clusters, also known as galactic clusters, and globular clusters. Star clusters
are significant because they allow astronomers to check models of stellar evolution
and the ages of stars.

We will be using the Plummer model, a density law that H. C. Plummer first used to
fit observations of globular clusters. It is now often used as a toy model in N-body
simulations of stellar systems. We have implemented the Plummer model in Python
and obtained initial conditions for a globular cluster of mass 1020 kg. The scale
parameter a has been set to 1010 m, and the number of stars is 1000.

4.2 Plummer Model

All particles are given an equal mass, i.e. the total mass divided by the number of
particles, to keep it simple.
The Plummer model uses the Schuster softened potential:

Φ(r) =−GM
1

(r2 +a2)
1
2

(4.1)

Using Poisson’s equation, we obtain the expression for the density distribution:

ρ(r) =
M
4π

3a2

(r2 +a2)
5
2

(4.2)
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Now, the mass distribution can be obtained by integrating the expression for density
over concentric shells. This will give us:

m(r) = M
(

1+
a2

r2

)−3
2

(4.3)

Inverting this equation gives us the dependence of radius on cumulative mass:

r(m) =
a√

(M
m )

2
3 −1

(4.4)

Similarly, using energy conservation and the expression for the potential, we arrive
at an equation expressing the max. velocity of a particle at radius r:

ve(r) =
√

2GM(r2 +a2)
−1
4 (4.5)

Using this expression and the distribution for the energy of the particles, we imple-
ment a rejection technique to assign velocities to each particle in the cluster. This
completes our set of required initial conditions.

4.3 Results

The simulation shows in great detail the buzzing hub of activity that is a stellar
cluster. In this system, energy is conserved to within 1%, and the virial theorem is
obeyed as the system evolves. Since this velocity is inversely proportional to the
scale parameter, stars move much slower in large clusters and this also leads to
"mass leakage" from the cluster over time.
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Figure 4.1: Stellar cluster initial setup

Figure 4.2: Radial distribution
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Figure 4.3: Velocity distribution

Figure 4.4: Energies
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(a) Kinetic Energy (b) Potential Energy.

Figure 4.6: Kinetic energy vs scale parameter



5. Galaxy Simulation

5.1 Various profiles currently in use:

The observed luminosity profiles of ellipticals and bulges are often well described
by the empirical formula I ∝ exp(−kR

1
4 ) where k is a constant (de Vaucouleurs

1948). one is interested in simple models for the spatial stellar density, which in
projection resemble de Vaucouleurs’ profile in the outer parts, but not necessarily
in the centre because the logarithmic slope of the luminosity profile vanishes at the
center, which is in contradiction with observational data. Two important models
are those introduced by Jaffe (1983) and Hernquist (1990), which have central
stellar densities proportional to r−2 and r−1, resulting in central surface densities
proportional to R−1 and lnR−1, respectively. These two models can be generalized
to a family of density profiles with different central slopes, known as the Dehnen
density and potential pairs (Dehnen 1993).

5.2 Dehnen pair:

The Dehnen distribution is a generalized distribution that returns different kinds of
well-known potential and density pairs for different values of parameter γ.

Φ(r) =
GM

a
·

{
− 1

2−γ
[1− ( r

r+a)
2−γ ], if γ ̸= 2

ln r
r+a , if γ = 2

}
(5.1)

ρ(r) =
(3− γ)M

4π

a
rγ(r+a)4−γ

(5.2)

Here, a is the scaling radius and M is the total mass of the system. γ = 2 gives the
Jaffe model and γ = 1 gives the Hernquist model.
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Using the prescription given in Springel et al (2005), velocities are assigned to
the particles.Once again, the particles that make up any one component of the
galaxy all have the same mass.

5.3 Implementation:

For this project, code was taken from the galstep initial condition generator and
adapted to use for our purposes. The obtained initial conditions were sent to the
driver code and the system was evolved. In terms of time step, the general rule of
thumb is that if the velocity of a particle is v and its distance from another particle
is d, then if the product of time step and v is on the order of d, the timestep is too
high. We need a lower time step in that case.

A star moving with an average velocity v in a galaxy of radius R containing N
equal-mass stars will have an aggregate velocity change of the order v in one
relaxation time, trelax, given by:

trelax =
N

8lnN
× R

v
(5.3)

In practice, we compare the relaxation time of a system with its crossing time,
tcross =

R
v , to determine whether the star will suffer from significant encounters in a

Hubble time. For the N = 1011 stars in a typical galaxy with R = 20 kpc and v = 200
km/s, tcross = 108 years, making trelax = 4.9× 1016 years. So, a typical star will not
deviate at all over the period of a Hubble time. Such a system where the timescale
for close encounters is much longer than a Hubble time, is called a collisionless
system. Stars in the galaxy constitute such a collisionless system.

5.4 Results

The simulation showed good results in terms of energy conservation and the
timestep chosen kept the energy within a reasonable bound near its original value.
However, due to a limitation in computing power, we could not produce a good
animation of the galaxy itself. Still, from the examples taken up earlier, we can keep
faith that given enough processing power, this method can show the evolution of a
galaxy to a very good degree. THe number of particles is 10000 and the timestep
chosen was 250000 years. The results are detailed in the next pages:
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Figure 5.1: Galaxy initial setup

(a) Radial distribution of particles (b) Velocity distribution of particles



5.4 Results 21

Figure 5.3: Energies

(a) Kinetic Energy (b) Potential Energy.



6. Conclusion

We have now seen and understood how complex gravitational systems such as
galaxies behave over time and the properties that they satisfy. The simple systems
gave us a basic idea of how gravitational forces are calculated and implemented
to evolve a system with time. We also devised ways to check the accuracy of our
simulation such as energy conservation, virial theorem verification and physical
intuition combined with some observational data. We learnt various criteria for
selecting a suitable time step for the simulation. We also compared two commonly-
used methods for calculating gravitational forces and compared their efficiency
and scalability. The Barnes-Hut algorithm is clearly the far superior choice for large
particle numbers.

When a system is initialized in a state that obeys virial theorem, it will continue
to obey virial theorem and the particles will move in closed orbits around the
barycentre of the system. Systems that do not have this property, on the other
hand, show more chaotic motion, with particles escaping the system randomly.
Such systems do not tend to evolve in such a way that virial theorem is obeyed at
any future instant in time, which has consequences for many-particle dynamical
systems.

N-body simulations are a highly useful tool to analyze the motion of large sys-
tems of particles, with the method finding use in other fields of physics like plasma
physics in different avatars. This project is a demonstration of how it can be im-
plemented to study galaxies and other intricate systems with a good degree of
accuracy. Due to restrictions on computing power, we could not simulate the
larger systems for very long times, but we were able to use lengths just long enough
to see things moving around and to verify the correctness of our method. With an
increase in computing power, we can apply the techniques learnt here to do even
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better simulations to bring out more features of the structures we’ve analyzed in this
project. Overall, this project was a highly enlightening and enthralling experience
and we thank Krittika, the Astronomy club of IIT Bombay for this opportunity. We’d
also like to thank our mentor Parth Sastry for his support and guidance.
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